Jiale/test2_ort/lite/ort/cv/efficientdet_d8.cpp

178 lines
6.5 KiB
C++
Raw Normal View History

2024-05-15 18:06:07 +08:00
//
// Created by DefTruth on 2021/8/15.
//
#include "efficientdet_d8.h"
#include "lite/ort/core/ort_utils.h"
#include "lite/utils.h"
using ortcv::EfficientDetD8;
Ort::Value EfficientDetD8::transform(const cv::Mat &mat)
{
cv::Mat canvas;
cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB);
// resize without padding, todo: add padding as the official Python implementation.
cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3),
input_node_dims.at(2)));
// (1,3,1536,1536) 1xCXHXW
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
canvas.convertTo(canvas, CV_32FC3, 1.0f / 255.f, 0.f);
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
void EfficientDetD8::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold,
unsigned int topk, unsigned int nms_type)
{
if (mat.empty()) return;
float img_height = static_cast<float>(mat.rows);
float img_width = static_cast<float>(mat.cols);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width);
// 4. hard|blend|offset nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
// ref: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch/blob/master/efficientdet/utils.py
void EfficientDetD8::generate_anchors(const float target_height, const float target_width)
{
if (!anchors_buffer.empty()) return;
// generate once.
for (const auto &stride: strides)
{
// create grid with a specific stride. Under a specific stride,
// 9 Anchors of the same anchor point are stacked together in order
for (float yv = stride / 2.0f; yv < target_height; yv += stride)
{
for (float xv = stride / 2.0f; xv < target_width; xv += stride)
{
for (const auto &scale: scales)
{
for (const auto &ratio: ratios)
{
float base_anchor_size = anchor_scale * stride * scale;
// aw/2 and ah/2, according to input size with different ratio.
float anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0f;
float anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0f;
float y1 = yv - anchor_size_y_2; // cy - ah/2
float x1 = xv - anchor_size_x_2; // cx - aw/2
float y2 = yv + anchor_size_y_2; // cy + ah/2
float x2 = xv + anchor_size_x_2; // cx + aw/2
#ifdef LITE_WIN32
EfficientDetD8Anchor anchor;
anchor.y1 = y1;
anchor.x1 = x1;
anchor.y2 = y2;
anchor.x2 = x2;
anchors_buffer.push_back(anchor);
#else
anchors_buffer.push_back((EfficientDetD8Anchor) {y1, x1, y2, x2});
#endif
} // end ratios 3
} // end scale 3
}
} // end grid
} // end strides
}
void EfficientDetD8::generate_bboxes(std::vector<types::Boxf> &bbox_collection,
std::vector<Ort::Value> &output_tensors,
float score_threshold,
float img_height, float img_width)
{
Ort::Value &regression = output_tensors.at(0); // (1,n,4) (dy, dx, dh, dw)]
Ort::Value &classification = output_tensors.at(1); // (1,n,90) 90 classes
auto reg_dims = output_node_dims.at(0); // (1,n,4)
auto cls_dims = output_node_dims.at(1); // (1,n,90)
const unsigned int num_anchors = reg_dims.at(1); // n = ?
const unsigned int num_classes = cls_dims.at(2); // 90
const float input_height = static_cast<float>(input_node_dims.at(2)); // e.g 512
const float input_width = static_cast<float>(input_node_dims.at(3)); // e.g 512
const float scale_height = img_height / input_height;
const float scale_width = img_width / input_width;
this->generate_anchors(input_height, input_width); // once
if (anchors_buffer.size() != num_anchors)
throw std::runtime_error("mismatch size for anchors_buffer and num_anchor.");
bbox_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
float cls_conf = classification.At<float>({0, i, 0});
unsigned int label = 0;
for (unsigned int j = 0; j < num_classes; ++j)
{
float tmp_conf = classification.At<float>({0, i, j});
if (tmp_conf > cls_conf)
{
cls_conf = tmp_conf;
label = j;
}
} // argmax
if (cls_conf < score_threshold) continue; // filter
float ay1 = anchors_buffer.at(i).y1;
float ax1 = anchors_buffer.at(i).x1;
float ay2 = anchors_buffer.at(i).y2;
float ax2 = anchors_buffer.at(i).x2;
float cya = (ay1 + ay2) / 2.0f; // center
float cxa = (ax1 + ax2) / 2.0f;
float ha = ay2 - ay1;
float wa = ax2 - ax1;
float dy = regression.At<float>({0, i, 0});
float dx = regression.At<float>({0, i, 1});
float dh = regression.At<float>({0, i, 2});
float dw = regression.At<float>({0, i, 3});
float cx = dx * wa + cxa;
float cy = dy * ha + cya;
float w = std::exp(dw) * wa;
float h = std::exp(dh) * ha;
types::Boxf box;
box.x1 = (cx - w / 2.f) * scale_width;
box.y1 = (cy - h / 2.f) * scale_height;
box.x2 = (cx + w / 2.f) * scale_width;
box.y2 = (cy + h / 2.f) * scale_height;
box.score = cls_conf;
box.label = label;
box.label_text = class_names[label];
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEORT_DEBUG
std::cout << "detected num_anchors: " << num_anchors << "\n";
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void EfficientDetD8::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk, unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}