421 lines
13 KiB
C++
421 lines
13 KiB
C++
|
|
//
|
||
|
|
// Created by DefTruth on 2021/12/30.
|
||
|
|
//
|
||
|
|
|
||
|
|
#include "scrfd.h"
|
||
|
|
#include "lite/ort/core/ort_utils.h"
|
||
|
|
|
||
|
|
using ortcv::SCRFD;
|
||
|
|
|
||
|
|
SCRFD::SCRFD(const std::string &_onnx_path, unsigned int _num_threads) :
|
||
|
|
BasicOrtHandler(_onnx_path, _num_threads)
|
||
|
|
{
|
||
|
|
initial_context();
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::initial_context()
|
||
|
|
{
|
||
|
|
if (num_outputs == 6)
|
||
|
|
{
|
||
|
|
fmc = 3;
|
||
|
|
feat_stride_fpn = {8, 16, 32};
|
||
|
|
num_anchors = 2;
|
||
|
|
use_kps = false;
|
||
|
|
} // kps
|
||
|
|
else if (num_outputs == 9)
|
||
|
|
{
|
||
|
|
fmc = 3;
|
||
|
|
feat_stride_fpn = {8, 16, 32};
|
||
|
|
num_anchors = 2;
|
||
|
|
use_kps = true;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
|
||
|
|
int target_height, int target_width,
|
||
|
|
SCRFDScaleParams &scale_params)
|
||
|
|
{
|
||
|
|
if (mat.empty()) return;
|
||
|
|
int img_height = static_cast<int>(mat.rows);
|
||
|
|
int img_width = static_cast<int>(mat.cols);
|
||
|
|
|
||
|
|
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
|
||
|
|
cv::Scalar(0, 0, 0));
|
||
|
|
// scale ratio (new / old) new_shape(h,w)
|
||
|
|
float w_r = (float) target_width / (float) img_width;
|
||
|
|
float h_r = (float) target_height / (float) img_height;
|
||
|
|
float r = std::min(w_r, h_r);
|
||
|
|
// compute padding
|
||
|
|
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
|
||
|
|
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
|
||
|
|
int pad_w = target_width - new_unpad_w; // >=0
|
||
|
|
int pad_h = target_height - new_unpad_h; // >=0
|
||
|
|
|
||
|
|
int dw = pad_w / 2;
|
||
|
|
int dh = pad_h / 2;
|
||
|
|
|
||
|
|
// resize with unscaling
|
||
|
|
cv::Mat new_unpad_mat = mat.clone();
|
||
|
|
cv::resize(new_unpad_mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
|
||
|
|
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
|
||
|
|
|
||
|
|
// record scale params.
|
||
|
|
scale_params.ratio = r;
|
||
|
|
scale_params.dw = dw;
|
||
|
|
scale_params.dh = dh;
|
||
|
|
scale_params.flag = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
Ort::Value SCRFD::transform(const cv::Mat &mat_rs)
|
||
|
|
{
|
||
|
|
cv::Mat canvas = mat_rs.clone();
|
||
|
|
// e.g (1,3,640,640) 1xCXHXW
|
||
|
|
cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB);
|
||
|
|
|
||
|
|
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
|
||
|
|
return ortcv::utils::transform::create_tensor(
|
||
|
|
canvas, input_node_dims, memory_info_handler,
|
||
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
|
||
|
|
float score_threshold, float iou_threshold, unsigned int topk)
|
||
|
|
{
|
||
|
|
if (mat.empty()) return;
|
||
|
|
auto img_height = static_cast<float>(mat.rows);
|
||
|
|
auto img_width = static_cast<float>(mat.cols);
|
||
|
|
const int target_height = (int) input_node_dims.at(2);
|
||
|
|
const int target_width = (int) input_node_dims.at(3);
|
||
|
|
|
||
|
|
// resize & unscale
|
||
|
|
cv::Mat mat_rs;
|
||
|
|
SCRFDScaleParams scale_params;
|
||
|
|
this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params);
|
||
|
|
|
||
|
|
// 1. make input tensor
|
||
|
|
Ort::Value input_tensor = this->transform(mat_rs);
|
||
|
|
// 2. inference scores & boxes.
|
||
|
|
auto output_tensors = ort_session->Run(
|
||
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
||
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
||
|
|
);
|
||
|
|
// 3. rescale & exclude.
|
||
|
|
std::vector<types::BoxfWithLandmarks> bbox_kps_collection;
|
||
|
|
this->generate_bboxes_kps(scale_params, bbox_kps_collection, output_tensors,
|
||
|
|
score_threshold, img_height, img_width);
|
||
|
|
// 4. hard nms with topk.
|
||
|
|
this->nms_bboxes_kps(bbox_kps_collection, detected_boxes_kps, iou_threshold, topk);
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::generate_points(const int target_height, const int target_width)
|
||
|
|
{
|
||
|
|
if (center_points_is_update) return;
|
||
|
|
// 8, 16, 32
|
||
|
|
for (auto stride : feat_stride_fpn)
|
||
|
|
{
|
||
|
|
unsigned int num_grid_w = target_width / stride;
|
||
|
|
unsigned int num_grid_h = target_height / stride;
|
||
|
|
// y
|
||
|
|
for (unsigned int i = 0; i < num_grid_h; ++i)
|
||
|
|
{
|
||
|
|
// x
|
||
|
|
for (unsigned int j = 0; j < num_grid_w; ++j)
|
||
|
|
{
|
||
|
|
// num_anchors, col major
|
||
|
|
for (unsigned int k = 0; k < num_anchors; ++k)
|
||
|
|
{
|
||
|
|
SCRFDPoint point;
|
||
|
|
point.cx = (float) j;
|
||
|
|
point.cy = (float) i;
|
||
|
|
point.stride = (float) stride;
|
||
|
|
center_points[stride].push_back(point);
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
center_points_is_update = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::generate_bboxes_kps(const SCRFDScaleParams &scale_params,
|
||
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
|
||
|
|
std::vector<Ort::Value> &output_tensors,
|
||
|
|
float score_threshold,
|
||
|
|
float img_height,
|
||
|
|
float img_width)
|
||
|
|
{
|
||
|
|
// score_8,score_16,score_32,bbox_8,bbox_16,bbox_32
|
||
|
|
Ort::Value &score_8 = output_tensors.at(0); // e.g [1,12800,1]
|
||
|
|
Ort::Value &score_16 = output_tensors.at(1); // e.g [1,3200,1]
|
||
|
|
Ort::Value &score_32 = output_tensors.at(2); // e.g [1,800,1]
|
||
|
|
Ort::Value &bbox_8 = output_tensors.at(3); // e.g [1,12800,4]
|
||
|
|
Ort::Value &bbox_16 = output_tensors.at(4); // e.g [1,3200,4]
|
||
|
|
Ort::Value &bbox_32 = output_tensors.at(5); // e.g [1,800,4]
|
||
|
|
// generate center points.
|
||
|
|
const float input_height = static_cast<float>(input_node_dims.at(2)); // e.g 640
|
||
|
|
const float input_width = static_cast<float>(input_node_dims.at(3)); // e.g 640
|
||
|
|
this->generate_points(input_height, input_width);
|
||
|
|
|
||
|
|
bbox_kps_collection.clear();
|
||
|
|
|
||
|
|
if (use_kps)
|
||
|
|
{
|
||
|
|
Ort::Value &kps_8 = output_tensors.at(6); // e.g [1,12800,10]
|
||
|
|
Ort::Value &kps_16 = output_tensors.at(7); // e.g [1,3200,10]
|
||
|
|
Ort::Value &kps_32 = output_tensors.at(8); // e.g [1,800,10]
|
||
|
|
|
||
|
|
// level 8 & 16 & 32 with kps
|
||
|
|
this->generate_bboxes_kps_single_stride(scale_params, score_8, bbox_8, kps_8, 8, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
this->generate_bboxes_kps_single_stride(scale_params, score_16, bbox_16, kps_16, 16, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
this->generate_bboxes_kps_single_stride(scale_params, score_32, bbox_32, kps_32, 32, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
} // no kps
|
||
|
|
else
|
||
|
|
{
|
||
|
|
// level 8 & 16 & 32
|
||
|
|
this->generate_bboxes_single_stride(scale_params, score_8, bbox_8, 8, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
this->generate_bboxes_single_stride(scale_params, score_16, bbox_16, 16, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
this->generate_bboxes_single_stride(scale_params, score_32, bbox_32, 32, score_threshold,
|
||
|
|
img_height, img_width, bbox_kps_collection);
|
||
|
|
}
|
||
|
|
|
||
|
|
#if LITEORT_DEBUG
|
||
|
|
std::cout << "generate_bboxes_kps num: " << bbox_kps_collection.size() << "\n";
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::generate_bboxes_single_stride(
|
||
|
|
const SCRFDScaleParams &scale_params, Ort::Value &score_pred, Ort::Value &bbox_pred,
|
||
|
|
unsigned int stride, float score_threshold, float img_height, float img_width,
|
||
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection)
|
||
|
|
{
|
||
|
|
unsigned int nms_pre_ = (stride / 8) * nms_pre; // 1 * 1000,2*1000,...
|
||
|
|
nms_pre_ = nms_pre_ >= nms_pre ? nms_pre_ : nms_pre;
|
||
|
|
|
||
|
|
auto stride_dims = score_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape();
|
||
|
|
const unsigned int num_points = stride_dims.at(1); // 12800
|
||
|
|
const float *score_ptr = score_pred.GetTensorMutableData<float>(); // [1,12800,1]
|
||
|
|
const float *bbox_ptr = bbox_pred.GetTensorMutableData<float>(); // [1,12800,4]
|
||
|
|
|
||
|
|
float ratio = scale_params.ratio;
|
||
|
|
int dw = scale_params.dw;
|
||
|
|
int dh = scale_params.dh;
|
||
|
|
|
||
|
|
unsigned int count = 0;
|
||
|
|
auto &stride_points = center_points[stride];
|
||
|
|
|
||
|
|
for (unsigned int i = 0; i < num_points; ++i)
|
||
|
|
{
|
||
|
|
const float cls_conf = score_ptr[i];
|
||
|
|
if (cls_conf < score_threshold) continue; // filter
|
||
|
|
auto &point = stride_points.at(i);
|
||
|
|
const float cx = point.cx; // cx
|
||
|
|
const float cy = point.cy; // cy
|
||
|
|
const float s = point.stride; // stride
|
||
|
|
|
||
|
|
// bbox
|
||
|
|
const float *offsets = bbox_ptr + i * 4;
|
||
|
|
float l = offsets[0]; // left
|
||
|
|
float t = offsets[1]; // top
|
||
|
|
float r = offsets[2]; // right
|
||
|
|
float b = offsets[3]; // bottom
|
||
|
|
|
||
|
|
types::BoxfWithLandmarks box_kps;
|
||
|
|
float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1
|
||
|
|
float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1
|
||
|
|
float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2
|
||
|
|
float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2
|
||
|
|
box_kps.box.x1 = std::max(0.f, x1);
|
||
|
|
box_kps.box.y1 = std::max(0.f, y1);
|
||
|
|
box_kps.box.x2 = std::min(img_width, x2);
|
||
|
|
box_kps.box.y2 = std::min(img_height, y2);
|
||
|
|
box_kps.box.score = cls_conf;
|
||
|
|
box_kps.box.label = 1;
|
||
|
|
box_kps.box.label_text = "face";
|
||
|
|
box_kps.box.flag = true;
|
||
|
|
box_kps.flag = true;
|
||
|
|
|
||
|
|
bbox_kps_collection.push_back(box_kps);
|
||
|
|
|
||
|
|
count += 1; // limit boxes for nms.
|
||
|
|
if (count > max_nms)
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (bbox_kps_collection.size() > nms_pre_)
|
||
|
|
{
|
||
|
|
std::sort(
|
||
|
|
bbox_kps_collection.begin(), bbox_kps_collection.end(),
|
||
|
|
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
|
||
|
|
{ return a.box.score > b.box.score; }
|
||
|
|
); // sort inplace
|
||
|
|
// trunc
|
||
|
|
bbox_kps_collection.resize(nms_pre_);
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::generate_bboxes_kps_single_stride(
|
||
|
|
const SCRFDScaleParams &scale_params, Ort::Value &score_pred, Ort::Value &bbox_pred,
|
||
|
|
Ort::Value &kps_pred, unsigned int stride, float score_threshold, float img_height,
|
||
|
|
float img_width, std::vector<types::BoxfWithLandmarks> &bbox_kps_collection)
|
||
|
|
{
|
||
|
|
unsigned int nms_pre_ = (stride / 8) * nms_pre; // 1 * 1000,2*1000,...
|
||
|
|
nms_pre_ = nms_pre_ >= nms_pre ? nms_pre_ : nms_pre;
|
||
|
|
|
||
|
|
auto stride_dims = score_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape();
|
||
|
|
const unsigned int num_points = stride_dims.at(1); // 12800
|
||
|
|
const float *score_ptr = score_pred.GetTensorMutableData<float>(); // [1,12800,1]
|
||
|
|
const float *bbox_ptr = bbox_pred.GetTensorMutableData<float>(); // [1,12800,4]
|
||
|
|
const float *kps_ptr = kps_pred.GetTensorMutableData<float>(); // [1,12800,10]
|
||
|
|
|
||
|
|
float ratio = scale_params.ratio;
|
||
|
|
int dw = scale_params.dw;
|
||
|
|
int dh = scale_params.dh;
|
||
|
|
|
||
|
|
unsigned int count = 0;
|
||
|
|
auto &stride_points = center_points[stride];
|
||
|
|
|
||
|
|
for (unsigned int i = 0; i < num_points; ++i)
|
||
|
|
{
|
||
|
|
const float cls_conf = score_ptr[i];
|
||
|
|
if (cls_conf < score_threshold) continue; // filter
|
||
|
|
auto &point = stride_points.at(i);
|
||
|
|
const float cx = point.cx; // cx
|
||
|
|
const float cy = point.cy; // cy
|
||
|
|
const float s = point.stride; // stride
|
||
|
|
|
||
|
|
// bbox
|
||
|
|
const float *offsets = bbox_ptr + i * 4;
|
||
|
|
float l = offsets[0]; // left
|
||
|
|
float t = offsets[1]; // top
|
||
|
|
float r = offsets[2]; // right
|
||
|
|
float b = offsets[3]; // bottom
|
||
|
|
|
||
|
|
types::BoxfWithLandmarks box_kps;
|
||
|
|
float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1
|
||
|
|
float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1
|
||
|
|
float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2
|
||
|
|
float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2
|
||
|
|
box_kps.box.x1 = std::max(0.f, x1);
|
||
|
|
box_kps.box.y1 = std::max(0.f, y1);
|
||
|
|
box_kps.box.x2 = std::min(img_width, x2);
|
||
|
|
box_kps.box.y2 = std::min(img_height, y2);
|
||
|
|
box_kps.box.score = cls_conf;
|
||
|
|
box_kps.box.label = 1;
|
||
|
|
box_kps.box.label_text = "face";
|
||
|
|
box_kps.box.flag = true;
|
||
|
|
|
||
|
|
// landmarks
|
||
|
|
const float *kps_offsets = kps_ptr + i * 10;
|
||
|
|
for (unsigned int j = 0; j < 10; j += 2)
|
||
|
|
{
|
||
|
|
cv::Point2f kps;
|
||
|
|
float kps_l = kps_offsets[j];
|
||
|
|
float kps_t = kps_offsets[j + 1];
|
||
|
|
float kps_x = ((cx + kps_l) * s - (float) dw) / ratio; // cx + l x
|
||
|
|
float kps_y = ((cy + kps_t) * s - (float) dh) / ratio; // cy + t y
|
||
|
|
kps.x = std::min(std::max(0.f, kps_x), img_width);
|
||
|
|
kps.y = std::min(std::max(0.f, kps_y), img_height);
|
||
|
|
box_kps.landmarks.points.push_back(kps);
|
||
|
|
}
|
||
|
|
box_kps.landmarks.flag = true;
|
||
|
|
box_kps.flag = true;
|
||
|
|
|
||
|
|
bbox_kps_collection.push_back(box_kps);
|
||
|
|
|
||
|
|
count += 1; // limit boxes for nms.
|
||
|
|
if (count > max_nms)
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (bbox_kps_collection.size() > nms_pre_)
|
||
|
|
{
|
||
|
|
std::sort(
|
||
|
|
bbox_kps_collection.begin(), bbox_kps_collection.end(),
|
||
|
|
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
|
||
|
|
{ return a.box.score > b.box.score; }
|
||
|
|
); // sort inplace
|
||
|
|
// trunc
|
||
|
|
bbox_kps_collection.resize(nms_pre_);
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
|
||
|
|
void SCRFD::nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
|
||
|
|
std::vector<types::BoxfWithLandmarks> &output,
|
||
|
|
float iou_threshold, unsigned int topk)
|
||
|
|
{
|
||
|
|
if (input.empty()) return;
|
||
|
|
std::sort(
|
||
|
|
input.begin(), input.end(),
|
||
|
|
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
|
||
|
|
{ return a.box.score > b.box.score; }
|
||
|
|
);
|
||
|
|
const unsigned int box_num = input.size();
|
||
|
|
std::vector<int> merged(box_num, 0);
|
||
|
|
|
||
|
|
unsigned int count = 0;
|
||
|
|
for (unsigned int i = 0; i < box_num; ++i)
|
||
|
|
{
|
||
|
|
if (merged[i]) continue;
|
||
|
|
std::vector<types::BoxfWithLandmarks> buf;
|
||
|
|
|
||
|
|
buf.push_back(input[i]);
|
||
|
|
merged[i] = 1;
|
||
|
|
|
||
|
|
for (unsigned int j = i + 1; j < box_num; ++j)
|
||
|
|
{
|
||
|
|
if (merged[j]) continue;
|
||
|
|
|
||
|
|
float iou = static_cast<float>(input[i].box.iou_of(input[j].box));
|
||
|
|
|
||
|
|
if (iou > iou_threshold)
|
||
|
|
{
|
||
|
|
merged[j] = 1;
|
||
|
|
buf.push_back(input[j]);
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
output.push_back(buf[0]);
|
||
|
|
|
||
|
|
// keep top k
|
||
|
|
count += 1;
|
||
|
|
if (count >= topk)
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|