Jiale/test2_ort/lite/ort/cv/scrfd.cpp

421 lines
13 KiB
C++
Raw Normal View History

2024-05-15 18:06:07 +08:00
//
// Created by DefTruth on 2021/12/30.
//
#include "scrfd.h"
#include "lite/ort/core/ort_utils.h"
using ortcv::SCRFD;
SCRFD::SCRFD(const std::string &_onnx_path, unsigned int _num_threads) :
BasicOrtHandler(_onnx_path, _num_threads)
{
initial_context();
}
void SCRFD::initial_context()
{
if (num_outputs == 6)
{
fmc = 3;
feat_stride_fpn = {8, 16, 32};
num_anchors = 2;
use_kps = false;
} // kps
else if (num_outputs == 9)
{
fmc = 3;
feat_stride_fpn = {8, 16, 32};
num_anchors = 2;
use_kps = true;
}
}
void SCRFD::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
SCRFDScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(0, 0, 0));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat = mat.clone();
cv::resize(new_unpad_mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.ratio = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.flag = true;
}
Ort::Value SCRFD::transform(const cv::Mat &mat_rs)
{
cv::Mat canvas = mat_rs.clone();
// e.g (1,3,640,640) 1xCXHXW
cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB);
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
void SCRFD::detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
float score_threshold, float iou_threshold, unsigned int topk)
{
if (mat.empty()) return;
auto img_height = static_cast<float>(mat.rows);
auto img_width = static_cast<float>(mat.cols);
const int target_height = (int) input_node_dims.at(2);
const int target_width = (int) input_node_dims.at(3);
// resize & unscale
cv::Mat mat_rs;
SCRFDScaleParams scale_params;
this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat_rs);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. rescale & exclude.
std::vector<types::BoxfWithLandmarks> bbox_kps_collection;
this->generate_bboxes_kps(scale_params, bbox_kps_collection, output_tensors,
score_threshold, img_height, img_width);
// 4. hard nms with topk.
this->nms_bboxes_kps(bbox_kps_collection, detected_boxes_kps, iou_threshold, topk);
}
void SCRFD::generate_points(const int target_height, const int target_width)
{
if (center_points_is_update) return;
// 8, 16, 32
for (auto stride : feat_stride_fpn)
{
unsigned int num_grid_w = target_width / stride;
unsigned int num_grid_h = target_height / stride;
// y
for (unsigned int i = 0; i < num_grid_h; ++i)
{
// x
for (unsigned int j = 0; j < num_grid_w; ++j)
{
// num_anchors, col major
for (unsigned int k = 0; k < num_anchors; ++k)
{
SCRFDPoint point;
point.cx = (float) j;
point.cy = (float) i;
point.stride = (float) stride;
center_points[stride].push_back(point);
}
}
}
}
center_points_is_update = true;
}
void SCRFD::generate_bboxes_kps(const SCRFDScaleParams &scale_params,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
std::vector<Ort::Value> &output_tensors,
float score_threshold,
float img_height,
float img_width)
{
// score_8,score_16,score_32,bbox_8,bbox_16,bbox_32
Ort::Value &score_8 = output_tensors.at(0); // e.g [1,12800,1]
Ort::Value &score_16 = output_tensors.at(1); // e.g [1,3200,1]
Ort::Value &score_32 = output_tensors.at(2); // e.g [1,800,1]
Ort::Value &bbox_8 = output_tensors.at(3); // e.g [1,12800,4]
Ort::Value &bbox_16 = output_tensors.at(4); // e.g [1,3200,4]
Ort::Value &bbox_32 = output_tensors.at(5); // e.g [1,800,4]
// generate center points.
const float input_height = static_cast<float>(input_node_dims.at(2)); // e.g 640
const float input_width = static_cast<float>(input_node_dims.at(3)); // e.g 640
this->generate_points(input_height, input_width);
bbox_kps_collection.clear();
if (use_kps)
{
Ort::Value &kps_8 = output_tensors.at(6); // e.g [1,12800,10]
Ort::Value &kps_16 = output_tensors.at(7); // e.g [1,3200,10]
Ort::Value &kps_32 = output_tensors.at(8); // e.g [1,800,10]
// level 8 & 16 & 32 with kps
this->generate_bboxes_kps_single_stride(scale_params, score_8, bbox_8, kps_8, 8, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_kps_single_stride(scale_params, score_16, bbox_16, kps_16, 16, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_kps_single_stride(scale_params, score_32, bbox_32, kps_32, 32, score_threshold,
img_height, img_width, bbox_kps_collection);
} // no kps
else
{
// level 8 & 16 & 32
this->generate_bboxes_single_stride(scale_params, score_8, bbox_8, 8, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_single_stride(scale_params, score_16, bbox_16, 16, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_single_stride(scale_params, score_32, bbox_32, 32, score_threshold,
img_height, img_width, bbox_kps_collection);
}
#if LITEORT_DEBUG
std::cout << "generate_bboxes_kps num: " << bbox_kps_collection.size() << "\n";
#endif
}
void SCRFD::generate_bboxes_single_stride(
const SCRFDScaleParams &scale_params, Ort::Value &score_pred, Ort::Value &bbox_pred,
unsigned int stride, float score_threshold, float img_height, float img_width,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection)
{
unsigned int nms_pre_ = (stride / 8) * nms_pre; // 1 * 1000,2*1000,...
nms_pre_ = nms_pre_ >= nms_pre ? nms_pre_ : nms_pre;
auto stride_dims = score_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape();
const unsigned int num_points = stride_dims.at(1); // 12800
const float *score_ptr = score_pred.GetTensorMutableData<float>(); // [1,12800,1]
const float *bbox_ptr = bbox_pred.GetTensorMutableData<float>(); // [1,12800,4]
float ratio = scale_params.ratio;
int dw = scale_params.dw;
int dh = scale_params.dh;
unsigned int count = 0;
auto &stride_points = center_points[stride];
for (unsigned int i = 0; i < num_points; ++i)
{
const float cls_conf = score_ptr[i];
if (cls_conf < score_threshold) continue; // filter
auto &point = stride_points.at(i);
const float cx = point.cx; // cx
const float cy = point.cy; // cy
const float s = point.stride; // stride
// bbox
const float *offsets = bbox_ptr + i * 4;
float l = offsets[0]; // left
float t = offsets[1]; // top
float r = offsets[2]; // right
float b = offsets[3]; // bottom
types::BoxfWithLandmarks box_kps;
float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1
float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1
float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2
float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2
box_kps.box.x1 = std::max(0.f, x1);
box_kps.box.y1 = std::max(0.f, y1);
box_kps.box.x2 = std::min(img_width, x2);
box_kps.box.y2 = std::min(img_height, y2);
box_kps.box.score = cls_conf;
box_kps.box.label = 1;
box_kps.box.label_text = "face";
box_kps.box.flag = true;
box_kps.flag = true;
bbox_kps_collection.push_back(box_kps);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
if (bbox_kps_collection.size() > nms_pre_)
{
std::sort(
bbox_kps_collection.begin(), bbox_kps_collection.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
); // sort inplace
// trunc
bbox_kps_collection.resize(nms_pre_);
}
}
void SCRFD::generate_bboxes_kps_single_stride(
const SCRFDScaleParams &scale_params, Ort::Value &score_pred, Ort::Value &bbox_pred,
Ort::Value &kps_pred, unsigned int stride, float score_threshold, float img_height,
float img_width, std::vector<types::BoxfWithLandmarks> &bbox_kps_collection)
{
unsigned int nms_pre_ = (stride / 8) * nms_pre; // 1 * 1000,2*1000,...
nms_pre_ = nms_pre_ >= nms_pre ? nms_pre_ : nms_pre;
auto stride_dims = score_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape();
const unsigned int num_points = stride_dims.at(1); // 12800
const float *score_ptr = score_pred.GetTensorMutableData<float>(); // [1,12800,1]
const float *bbox_ptr = bbox_pred.GetTensorMutableData<float>(); // [1,12800,4]
const float *kps_ptr = kps_pred.GetTensorMutableData<float>(); // [1,12800,10]
float ratio = scale_params.ratio;
int dw = scale_params.dw;
int dh = scale_params.dh;
unsigned int count = 0;
auto &stride_points = center_points[stride];
for (unsigned int i = 0; i < num_points; ++i)
{
const float cls_conf = score_ptr[i];
if (cls_conf < score_threshold) continue; // filter
auto &point = stride_points.at(i);
const float cx = point.cx; // cx
const float cy = point.cy; // cy
const float s = point.stride; // stride
// bbox
const float *offsets = bbox_ptr + i * 4;
float l = offsets[0]; // left
float t = offsets[1]; // top
float r = offsets[2]; // right
float b = offsets[3]; // bottom
types::BoxfWithLandmarks box_kps;
float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1
float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1
float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2
float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2
box_kps.box.x1 = std::max(0.f, x1);
box_kps.box.y1 = std::max(0.f, y1);
box_kps.box.x2 = std::min(img_width, x2);
box_kps.box.y2 = std::min(img_height, y2);
box_kps.box.score = cls_conf;
box_kps.box.label = 1;
box_kps.box.label_text = "face";
box_kps.box.flag = true;
// landmarks
const float *kps_offsets = kps_ptr + i * 10;
for (unsigned int j = 0; j < 10; j += 2)
{
cv::Point2f kps;
float kps_l = kps_offsets[j];
float kps_t = kps_offsets[j + 1];
float kps_x = ((cx + kps_l) * s - (float) dw) / ratio; // cx + l x
float kps_y = ((cy + kps_t) * s - (float) dh) / ratio; // cy + t y
kps.x = std::min(std::max(0.f, kps_x), img_width);
kps.y = std::min(std::max(0.f, kps_y), img_height);
box_kps.landmarks.points.push_back(kps);
}
box_kps.landmarks.flag = true;
box_kps.flag = true;
bbox_kps_collection.push_back(box_kps);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
if (bbox_kps_collection.size() > nms_pre_)
{
std::sort(
bbox_kps_collection.begin(), bbox_kps_collection.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
); // sort inplace
// trunc
bbox_kps_collection.resize(nms_pre_);
}
}
void SCRFD::nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
std::vector<types::BoxfWithLandmarks> &output,
float iou_threshold, unsigned int topk)
{
if (input.empty()) return;
std::sort(
input.begin(), input.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
);
const unsigned int box_num = input.size();
std::vector<int> merged(box_num, 0);
unsigned int count = 0;
for (unsigned int i = 0; i < box_num; ++i)
{
if (merged[i]) continue;
std::vector<types::BoxfWithLandmarks> buf;
buf.push_back(input[i]);
merged[i] = 1;
for (unsigned int j = i + 1; j < box_num; ++j)
{
if (merged[j]) continue;
float iou = static_cast<float>(input[i].box.iou_of(input[j].box));
if (iou > iou_threshold)
{
merged[j] = 1;
buf.push_back(input[j]);
}
}
output.push_back(buf[0]);
// keep top k
count += 1;
if (count >= topk)
break;
}
}