Jiale/test2_ort/lite/ort/cv/ultraface.cpp

118 lines
3.3 KiB
C++
Raw Normal View History

2024-05-15 18:06:07 +08:00
//
// Created by DefTruth on 2021/3/14.
//
#include "ultraface.h"
#include "lite/ort/core/ort_utils.h"
#include "lite/utils.h"
using ortcv::UltraFace;
Ort::Value UltraFace::transform(const cv::Mat &mat)
{
cv::Mat canvas;
cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB);
cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3),
input_node_dims.at(2)));
// (640,480) | (320,240) | (w,h) 1xCXHXW
ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
void UltraFace::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold, unsigned int topk,
unsigned int nms_type)
{
if (mat.empty()) return;
// this->transform(mat);
float img_height = static_cast<float>(mat.rows);
float img_width = static_cast<float>(mat.cols);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width);
// 4. hard|blend nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
void UltraFace::generate_bboxes(std::vector<types::Boxf> &bbox_collection,
std::vector<Ort::Value> &output_tensors,
float score_threshold, float img_height,
float img_width)
{
Ort::Value &scores = output_tensors.at(0);
Ort::Value &boxes = output_tensors.at(1);
auto scores_dims = output_node_dims.at(0); // (1,n,2)
const unsigned int num_anchors = scores_dims.at(1); // n = 17640 (640x480)
bbox_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
float confidence = scores.At<float>({0, i, 1});
if (confidence < score_threshold) continue;
types::Boxf box;
box.x1 = boxes.At<float>({0, i, 0}) * img_width;
box.y1 = boxes.At<float>({0, i, 1}) * img_height;
box.x2 = boxes.At<float>({0, i, 2}) * img_width;
box.y2 = boxes.At<float>({0, i, 3}) * img_height;
box.score = confidence;
box.label_text = "face";
box.label = 1;
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEORT_DEBUG
std::cout << "detected num_anchors: " << num_anchors << "\n";
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void UltraFace::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk, unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}