116 lines
4.1 KiB
C++
116 lines
4.1 KiB
C++
|
|
//
|
||
|
|
// Created by DefTruth on 2021/3/14.
|
||
|
|
//
|
||
|
|
|
||
|
|
#include "yolov4.h"
|
||
|
|
#include "lite/ort/core/ort_utils.h"
|
||
|
|
#include "lite/utils.h"
|
||
|
|
|
||
|
|
using ortcv::YoloV4;
|
||
|
|
|
||
|
|
|
||
|
|
Ort::Value YoloV4::transform(const cv::Mat &mat)
|
||
|
|
{
|
||
|
|
cv::Mat canvas;
|
||
|
|
cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB);
|
||
|
|
cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3),
|
||
|
|
input_node_dims.at(2)));
|
||
|
|
// (1,3,640|416,640|416) 1xCXHXW
|
||
|
|
|
||
|
|
ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32
|
||
|
|
return ortcv::utils::transform::create_tensor(
|
||
|
|
canvas, input_node_dims, memory_info_handler,
|
||
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
||
|
|
}
|
||
|
|
|
||
|
|
void YoloV4::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
|
||
|
|
float score_threshold, float iou_threshold,
|
||
|
|
unsigned int topk, unsigned int nms_type)
|
||
|
|
{
|
||
|
|
if (mat.empty()) return;
|
||
|
|
// this->transform(mat);
|
||
|
|
float img_height = static_cast<float>(mat.rows);
|
||
|
|
float img_width = static_cast<float>(mat.cols);
|
||
|
|
|
||
|
|
// 1. make input tensor
|
||
|
|
Ort::Value input_tensor = this->transform(mat);
|
||
|
|
// 2. inference scores & boxes.
|
||
|
|
auto output_tensors = ort_session->Run(
|
||
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
||
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
||
|
|
);
|
||
|
|
// 3. rescale & exclude.
|
||
|
|
std::vector<types::Boxf> bbox_collection;
|
||
|
|
this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width);
|
||
|
|
// 4. hard|blend nms with topk.
|
||
|
|
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
|
||
|
|
}
|
||
|
|
|
||
|
|
void YoloV4::generate_bboxes(std::vector<types::Boxf> &bbox_collection,
|
||
|
|
std::vector<Ort::Value> &output_tensors,
|
||
|
|
float score_threshold, float img_height,
|
||
|
|
float img_width)
|
||
|
|
{
|
||
|
|
Ort::Value &pred = output_tensors.at(3); // (1xn,25=5+20=cxcy+cwch+obj_conf+cls_conf)
|
||
|
|
auto pred_dims = output_node_dims.at(3); // (1xn,25)
|
||
|
|
const unsigned int num_anchors = pred_dims.at(0); // n = ?
|
||
|
|
const unsigned int num_classes = pred_dims.at(1) - 5; // 20
|
||
|
|
const float input_height = static_cast<float>(input_node_dims.at(2)); // e.g 640
|
||
|
|
const float input_width = static_cast<float>(input_node_dims.at(3)); // e.g 640
|
||
|
|
const float scale_height = img_height / input_height;
|
||
|
|
const float scale_width = img_width / input_width;
|
||
|
|
|
||
|
|
bbox_collection.clear();
|
||
|
|
unsigned int count = 0;
|
||
|
|
for (unsigned int i = 0; i < num_anchors; ++i)
|
||
|
|
{
|
||
|
|
float obj_conf = pred.At<float>({i, 4});
|
||
|
|
if (obj_conf < score_threshold) continue; // filter first.
|
||
|
|
|
||
|
|
float cls_conf = pred.At<float>({i, 5});
|
||
|
|
unsigned int label = 0;
|
||
|
|
for (unsigned int j = 0; j < num_classes; ++j)
|
||
|
|
{
|
||
|
|
float tmp_conf = pred.At<float>({i, j + 5});
|
||
|
|
if (tmp_conf > cls_conf)
|
||
|
|
{
|
||
|
|
cls_conf = tmp_conf;
|
||
|
|
label = j;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
float conf = obj_conf * cls_conf; // cls_conf (0.,1.)
|
||
|
|
if (conf < score_threshold) continue; // filter
|
||
|
|
|
||
|
|
float cx = pred.At<float>({i, 0});
|
||
|
|
float cy = pred.At<float>({i, 1});
|
||
|
|
float w = pred.At<float>({i, 2});
|
||
|
|
float h = pred.At<float>({i, 3});
|
||
|
|
|
||
|
|
types::Boxf box;
|
||
|
|
box.x1 = (cx - w / 2.f) * scale_width;
|
||
|
|
box.y1 = (cy - h / 2.f) * scale_height;
|
||
|
|
box.x2 = (cx + w / 2.f) * scale_width;
|
||
|
|
box.y2 = (cy + h / 2.f) * scale_height;
|
||
|
|
box.score = conf;
|
||
|
|
box.label = label;
|
||
|
|
box.label_text = class_names[label];
|
||
|
|
box.flag = true;
|
||
|
|
bbox_collection.push_back(box);
|
||
|
|
|
||
|
|
count += 1; // limit boxes for nms.
|
||
|
|
if (count > max_nms)
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
#if LITEORT_DEBUG
|
||
|
|
std::cout << "detected num_anchors: " << num_anchors << "\n";
|
||
|
|
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
void YoloV4::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
|
||
|
|
float iou_threshold, unsigned int topk, unsigned int nms_type)
|
||
|
|
{
|
||
|
|
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
|
||
|
|
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
|
||
|
|
else lite::utils::hard_nms(input, output, iou_threshold, topk);
|
||
|
|
}
|