// // Created by DefTruth on 2021/4/2. // #include "age_googlenet.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::AgeGoogleNet; Ort::Value AgeGoogleNet::transform(const cv::Mat &mat) { cv::Mat canvas; cv::resize(mat, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB); // (1,3,224,224) ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void AgeGoogleNet::detect(const cv::Mat &mat, types::Age &age) { if (mat.empty()) return; // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); Ort::Value &age_logits = output_tensors.at(0); // (1,8) auto age_dims = output_node_dims.at(0); unsigned int interval = 0; const unsigned int num_intervals = age_dims.at(1); // 8 const float *pred_logits = age_logits.GetTensorMutableData(); auto softmax_probs = lite::utils::math::softmax(pred_logits, num_intervals, interval); const float pred_age = static_cast(age_intervals[interval][0] + age_intervals[interval][1]) / 2.0f; age.age = pred_age; age.age_interval[0] = age_intervals[interval][0]; age.age_interval[1] = age_intervals[interval][1]; age.interval_prob = softmax_probs[interval]; age.flag = true; }