// // Created by DefTruth on 2021/5/30. // #include "efficientnet_lite4.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::EfficientNetLite4; Ort::Value EfficientNetLite4::transform(const cv::Mat &mat) { cv::Mat canvas; cv::resize(mat, canvas, cv::Size(input_node_dims.at(2), input_node_dims.at(1))); // (1,h,w,c) cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB); ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32 // (1,224,224,3) return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::HWC); } void EfficientNetLite4::detect(const cv::Mat &mat, types::ImageNetContent &content, unsigned int top_k) { if (mat.empty()) return; // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); Ort::Value &scores_tensor = output_tensors.at(0); // (1,1000) const unsigned int num_classes = output_node_dims.at(0).at(1); const float *scores = scores_tensor.GetTensorMutableData(); // float std::vector sorted_indices = lite::utils::math::argsort(scores, num_classes); if (top_k > num_classes) top_k = num_classes; content.scores.clear(); content.labels.clear(); content.texts.clear(); for (unsigned int i = 0; i < top_k; ++i) { content.labels.push_back(sorted_indices[i]); content.scores.push_back(scores[sorted_indices[i]]); content.texts.push_back(class_names[sorted_indices[i]]); } content.flag = true; }