// // Created by DefTruth on 2021/6/5. // #include "ssd.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::SSD; Ort::Value SSD::transform(const cv::Mat &mat) { cv::Mat canvas; cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB); cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); // (1200,1200,3) canvas.convertTo(canvas, CV_32FC3, 1.0f / 255.0f, 0.f); // (0.,1.) ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void SSD::detect(const cv::Mat &mat, std::vector &detected_boxes, float score_threshold, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (mat.empty()) return; // this->transform(mat); float img_height = static_cast(mat.rows); float img_width = static_cast(mat.cols); // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference scores & boxes. auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); // 3. rescale & exclude. std::vector bbox_collection; this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width); // 4. hard|blend nms with topk. this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type); } void SSD::generate_bboxes(std::vector &bbox_collection, std::vector &output_tensors, float score_threshold, float img_height, float img_width) { Ort::Value &bboxes = output_tensors.at(0); // (1,n,4) Ort::Value &labels = output_tensors.at(1); // (1,n) bg+cls=1+80 Ort::Value &scores = output_tensors.at(2); // (1,n) n is dynamic auto bboxes_dims = bboxes.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape(); const unsigned int num_anchors = bboxes_dims.at(1); bbox_collection.clear(); unsigned int count = 0; for (unsigned int i = 0; i < num_anchors; ++i) { float conf = scores.At({0, i}); if (conf < score_threshold) continue; // filter unsigned int label = labels.At({0, i}) - 1; types::Boxf box; box.x1 = bboxes.At({0, i, 0}) * (float) img_width; box.y1 = bboxes.At({0, i, 1}) * (float) img_height; box.x2 = bboxes.At({0, i, 2}) * (float) img_width; box.y2 = bboxes.At({0, i, 3}) * (float) img_height; box.score = conf; box.label = label; box.label_text = class_names[label]; box.flag = true; bbox_collection.push_back(box); count += 1; // limit boxes for nms. if (count > max_nms) break; } #if LITEORT_DEBUG std::cout << "detected num_anchors: " << num_anchors << "\n"; std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n"; #endif } void SSD::nms(std::vector &input, std::vector &output, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk); else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk); else lite::utils::hard_nms(input, output, iou_threshold, topk); }