// // Created by DefTruth on 2021/7/27. // #include "pfld68.h" #include "lite/ort/core/ort_utils.h" using ortcv::PFLD68; Ort::Value PFLD68::transform(const cv::Mat &mat) { cv::Mat canvas; cv::resize(mat, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB); // (1,3,112,112) ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void PFLD68::detect(const cv::Mat &mat, types::Landmarks &landmarks) { if (mat.empty()) return; // this->transform(mat); float img_height = static_cast(mat.rows); float img_width = static_cast(mat.cols); // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); // 3. fetch landmarks. Ort::Value &landmarks_norm = output_tensors.at(0); // (1,68*2) auto landmark_dims = output_node_dims.at(0); const unsigned int num_landmarks = landmark_dims.at(1); for (unsigned int i = 0; i < num_landmarks; i += 2) { float x = landmarks_norm.At({0, i}); float y = landmarks_norm.At({0, i + 1}); x = std::min(std::max(0.f, x), 1.0f); y = std::min(std::max(0.f, y), 1.0f); landmarks.points.push_back(cv::Point2f(x * img_width, y * img_height)); } landmarks.flag = true; }