// // Created by DefTruth on 2021/3/14. // #include "yolov4.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::YoloV4; Ort::Value YoloV4::transform(const cv::Mat &mat) { cv::Mat canvas; cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB); cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); // (1,3,640|416,640|416) 1xCXHXW ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void YoloV4::detect(const cv::Mat &mat, std::vector &detected_boxes, float score_threshold, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (mat.empty()) return; // this->transform(mat); float img_height = static_cast(mat.rows); float img_width = static_cast(mat.cols); // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference scores & boxes. auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); // 3. rescale & exclude. std::vector bbox_collection; this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width); // 4. hard|blend nms with topk. this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type); } void YoloV4::generate_bboxes(std::vector &bbox_collection, std::vector &output_tensors, float score_threshold, float img_height, float img_width) { Ort::Value &pred = output_tensors.at(3); // (1xn,25=5+20=cxcy+cwch+obj_conf+cls_conf) auto pred_dims = output_node_dims.at(3); // (1xn,25) const unsigned int num_anchors = pred_dims.at(0); // n = ? const unsigned int num_classes = pred_dims.at(1) - 5; // 20 const float input_height = static_cast(input_node_dims.at(2)); // e.g 640 const float input_width = static_cast(input_node_dims.at(3)); // e.g 640 const float scale_height = img_height / input_height; const float scale_width = img_width / input_width; bbox_collection.clear(); unsigned int count = 0; for (unsigned int i = 0; i < num_anchors; ++i) { float obj_conf = pred.At({i, 4}); if (obj_conf < score_threshold) continue; // filter first. float cls_conf = pred.At({i, 5}); unsigned int label = 0; for (unsigned int j = 0; j < num_classes; ++j) { float tmp_conf = pred.At({i, j + 5}); if (tmp_conf > cls_conf) { cls_conf = tmp_conf; label = j; } } float conf = obj_conf * cls_conf; // cls_conf (0.,1.) if (conf < score_threshold) continue; // filter float cx = pred.At({i, 0}); float cy = pred.At({i, 1}); float w = pred.At({i, 2}); float h = pred.At({i, 3}); types::Boxf box; box.x1 = (cx - w / 2.f) * scale_width; box.y1 = (cy - h / 2.f) * scale_height; box.x2 = (cx + w / 2.f) * scale_width; box.y2 = (cy + h / 2.f) * scale_height; box.score = conf; box.label = label; box.label_text = class_names[label]; box.flag = true; bbox_collection.push_back(box); count += 1; // limit boxes for nms. if (count > max_nms) break; } #if LITEORT_DEBUG std::cout << "detected num_anchors: " << num_anchors << "\n"; std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n"; #endif } void YoloV4::nms(std::vector &input, std::vector &output, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk); else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk); else lite::utils::hard_nms(input, output, iou_threshold, topk); }