// // Created by DefTruth on 2021/6/26. // #include "lite/lite.h" static void test_default() { std::string onnx_path = "../../../hub/onnx/cv/efficientnet-lite4-11.onnx"; std::string test_img_path = "../../../examples/lite/resources/test_lite_efficientnet_lite4.jpg"; lite::cv::classification::EfficientNetLite4 *efficientnet_lite4 = new lite::cv::classification::EfficientNetLite4(onnx_path); lite::types::ImageNetContent content; cv::Mat img_bgr = cv::imread(test_img_path); efficientnet_lite4->detect(img_bgr, content); if (content.flag) { const unsigned int top_k = content.scores.size(); if (top_k > 0) { for (unsigned int i = 0; i < top_k; ++i) std::cout << i + 1 << ": " << content.labels.at(i) << ": " << content.texts.at(i) << ": " << content.scores.at(i) << std::endl; } std::cout << "Default Version Done!" << std::endl; } delete efficientnet_lite4; } static void test_onnxruntime() { #ifdef ENABLE_ONNXRUNTIME std::string onnx_path = "../../../hub/onnx/cv/efficientnet-lite4-11.onnx"; std::string test_img_path = "../../../examples/lite/resources/test_lite_efficientnet_lite4.jpg"; lite::onnxruntime::cv::classification::EfficientNetLite4 *efficientnet_lite4 = new lite::onnxruntime::cv::classification::EfficientNetLite4(onnx_path); lite::types::ImageNetContent content; cv::Mat img_bgr = cv::imread(test_img_path); efficientnet_lite4->detect(img_bgr, content); if (content.flag) { const unsigned int top_k = content.scores.size(); if (top_k > 0) { for (unsigned int i = 0; i < top_k; ++i) std::cout << i + 1 << ": " << content.labels.at(i) << ": " << content.texts.at(i) << ": " << content.scores.at(i) << std::endl; } std::cout << "ONNXRuntime Version Done!" << std::endl; } delete efficientnet_lite4; #endif } static void test_mnn() { #ifdef ENABLE_MNN std::string mnn_path = "../../../hub/mnn/cv/efficientnet-lite4-11.mnn"; std::string test_img_path = "../../../examples/lite/resources/test_lite_efficientnet_lite4.jpg"; lite::mnn::cv::classification::EfficientNetLite4 *efficientnet_lite4 = new lite::mnn::cv::classification::EfficientNetLite4(mnn_path); lite::types::ImageNetContent content; cv::Mat img_bgr = cv::imread(test_img_path); efficientnet_lite4->detect(img_bgr, content); if (content.flag) { const unsigned int top_k = content.scores.size(); if (top_k > 0) { for (unsigned int i = 0; i < top_k; ++i) std::cout << i + 1 << ": " << content.labels.at(i) << ": " << content.texts.at(i) << ": " << content.scores.at(i) << std::endl; } std::cout << "MNN Version Done!" << std::endl; } delete efficientnet_lite4; #endif } static void test_ncnn() { #ifdef ENABLE_NCNN std::string param_path = "../../../hub/ncnn/cv/efficientnet-lite4-11.opt.param"; std::string bin_path = "../../../hub/ncnn/cv/efficientnet-lite4-11.opt.bin"; std::string test_img_path = "../../../examples/lite/resources/test_lite_efficientnet_lite4.jpg"; lite::ncnn::cv::classification::EfficientNetLite4 *efficientnet_lite4 = new lite::ncnn::cv::classification::EfficientNetLite4(param_path, bin_path); lite::types::ImageNetContent content; cv::Mat img_bgr = cv::imread(test_img_path); efficientnet_lite4->detect(img_bgr, content); if (content.flag) { const unsigned int top_k = content.scores.size(); if (top_k > 0) { for (unsigned int i = 0; i < top_k; ++i) std::cout << i + 1 << ": " << content.labels.at(i) << ": " << content.texts.at(i) << ": " << content.scores.at(i) << std::endl; } std::cout << "NCNN Version Done!" << std::endl; } delete efficientnet_lite4; #endif } static void test_tnn() { #ifdef ENABLE_TNN std::string proto_path = "../../../hub/tnn/cv/efficientnet-lite4-11.opt.tnnproto"; std::string model_path = "../../../hub/tnn/cv/efficientnet-lite4-11.opt.tnnmodel"; std::string test_img_path = "../../../examples/lite/resources/test_lite_efficientnet_lite4.jpg"; lite::tnn::cv::classification::EfficientNetLite4 *efficientnet_lite4 = new lite::tnn::cv::classification::EfficientNetLite4(proto_path, model_path); lite::types::ImageNetContent content; cv::Mat img_bgr = cv::imread(test_img_path); efficientnet_lite4->detect(img_bgr, content); if (content.flag) { const unsigned int top_k = content.scores.size(); if (top_k > 0) { for (unsigned int i = 0; i < top_k; ++i) std::cout << i + 1 << ": " << content.labels.at(i) << ": " << content.texts.at(i) << ": " << content.scores.at(i) << std::endl; } std::cout << "TNN Version Done!" << std::endl; } delete efficientnet_lite4; #endif } static void test_lite() { test_default(); test_onnxruntime(); test_mnn(); // test_ncnn(); test_tnn(); } int main(__unused int argc, __unused char *argv[]) { test_lite(); return 0; }