// // Created by DefTruth on 2021/12/27. // #include "nanodet_plus.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::NanoDetPlus; void NanoDetPlus::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs, int target_height, int target_width, NanoPlusScaleParams &scale_params) { if (mat.empty()) return; int img_height = static_cast(mat.rows); int img_width = static_cast(mat.cols); mat_rs = cv::Mat(target_height, target_width, CV_8UC3, cv::Scalar(0, 0, 0)); // scale ratio (new / old) new_shape(h,w) float w_r = (float) target_width / (float) img_width; float h_r = (float) target_height / (float) img_height; float r = std::min(w_r, h_r); // compute padding int new_unpad_w = static_cast((float) img_width * r); // floor int new_unpad_h = static_cast((float) img_height * r); // floor int pad_w = target_width - new_unpad_w; // >=0 int pad_h = target_height - new_unpad_h; // >=0 int dw = pad_w / 2; int dh = pad_h / 2; // resize with unscaling cv::Mat new_unpad_mat = mat.clone(); cv::resize(new_unpad_mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h)); new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h))); // record scale params. scale_params.ratio = r; scale_params.dw = dw; scale_params.dh = dh; scale_params.flag = true; } Ort::Value NanoDetPlus::transform(const cv::Mat &mat_rs) { cv::Mat canvas = mat_rs.clone(); // e.g (1,3,320,320) 1xCXHXW ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void NanoDetPlus::detect(const cv::Mat &mat, std::vector &detected_boxes, float score_threshold, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (mat.empty()) return; auto img_height = static_cast(mat.rows); auto img_width = static_cast(mat.cols); const int target_height = (int) input_node_dims.at(2); const int target_width = (int) input_node_dims.at(3); // resize & unscale cv::Mat mat_rs; NanoPlusScaleParams scale_params; this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params); // 1. make input tensor Ort::Value input_tensor = this->transform(mat_rs); // 2. inference scores & boxes. auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); // 3. rescale & exclude. std::vector bbox_collection; this->generate_bboxes(scale_params, bbox_collection, output_tensors, score_threshold, img_height, img_width); // 4. hard|blend|offset nms with topk. this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type); } void NanoDetPlus::generate_points(unsigned int target_height, unsigned int target_width) { if (center_points_is_update) return; // 8, 16, 32, 64 for (auto stride : strides) { unsigned int num_grid_w = target_width / stride; unsigned int num_grid_h = target_height / stride; for (unsigned int g1 = 0; g1 < num_grid_h; ++g1) { for (unsigned int g0 = 0; g0 < num_grid_w; ++g0) { float grid0 = (float) g0; float grid1 = (float) g1; #ifdef LITE_WIN32 NanoPlusCenterPoint point; point.grid0 = grid0; point.grid1 = grid1; point.stride = (float) stride; center_points.push_back(point); #else center_points.push_back((NanoPlusCenterPoint) {grid0, grid1, (float) stride}); #endif } } } center_points_is_update = true; } void NanoDetPlus::generate_bboxes(const NanoPlusScaleParams &scale_params, std::vector &bbox_collection, std::vector &output_tensors, float score_threshold, float img_height, float img_width) { Ort::Value &output_pred = output_tensors.at(0); // e.g [1,2125,112] auto input_height = static_cast(input_node_dims.at(2)); // e.g 320 auto input_width = static_cast(input_node_dims.at(3)); // e.g 320 this->generate_points(input_height, input_width); auto output_pred_dims = output_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape(); const unsigned int num_classes = 80; const unsigned int num_cls_reg = output_pred_dims.at(2); // 112 const unsigned int reg_max = (num_cls_reg - num_classes) / 4; // e.g 8=7+1 const unsigned int num_points = center_points.size(); const float *output_pred_ptr = output_pred.GetTensorMutableData(); float ratio = scale_params.ratio; int dw = scale_params.dw; int dh = scale_params.dh; unsigned int count = 0; bbox_collection.clear(); for (unsigned int i = 0; i < num_points; ++i) { const float *scores = output_pred_ptr + i * num_cls_reg; // row ptr float cls_conf = scores[0]; unsigned int label = 0; for (unsigned int j = 0; j < num_classes; ++j) { float tmp_conf = scores[j]; if (tmp_conf > cls_conf) { cls_conf = tmp_conf; label = j; } } // argmax if (cls_conf < score_threshold) continue; // filter auto &point = center_points.at(i); const float cx = point.grid0; // cx const float cy = point.grid1; // cy const float s = point.stride; // stride const float *logits = output_pred_ptr + i * num_cls_reg + num_classes; // 32|44... std::vector offsets(4); for (unsigned int k = 0; k < 4; ++k) { float offset = 0.f; unsigned int max_id; auto probs = lite::utils::math::softmax( logits + (k * reg_max), reg_max, max_id); for (unsigned int l = 0; l < reg_max; ++l) offset += (float) l * probs[l]; offsets[k] = offset; } float l = offsets[0]; // left float t = offsets[1]; // top float r = offsets[2]; // right float b = offsets[3]; // bottom types::Boxf box; float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1 float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1 float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2 float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2 box.x1 = std::max(0.f, x1); box.y1 = std::max(0.f, y1); box.x2 = std::min(img_width, x2); box.y2 = std::min(img_height, y2); box.score = cls_conf; box.label = label; box.label_text = class_names[label]; box.flag = true; bbox_collection.push_back(box); count += 1; // limit boxes for nms. if (count > max_nms) break; } #if LITEORT_DEBUG std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n"; #endif } void NanoDetPlus::nms(std::vector &input, std::vector &output, float iou_threshold, unsigned int topk, unsigned int nms_type) { if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk); else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk); else lite::utils::hard_nms(input, output, iou_threshold, topk); }