// // Created by DefTruth on 2021/3/14. // #include "ssrnet.h" #include "lite/ort/core/ort_utils.h" using ortcv::SSRNet; Ort::Value SSRNet::transform(const cv::Mat &mat) { cv::Mat canvas; cv::resize(mat, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); // 64x64x3 canvas.convertTo(canvas, CV_32FC3, 1.0f / 255.0f, 0.f); // 64x64x3 (0.,1.0) // (1,3,64,64) ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32 return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void SSRNet::detect(const cv::Mat &mat, types::Age &age) { if (mat.empty()) return; // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); Ort::Value &age_tensor = output_tensors.at(0); // (1,) const float pred_age = age_tensor.At({0}); const unsigned int interval_min = static_cast(pred_age - 2.f > 0.f ? pred_age - 2.f : 0.f); const unsigned int interval_max = static_cast(pred_age + 3.f < 100.f ? pred_age + 3.f : 100.f); age.age = pred_age; age.age_interval[0] = interval_min; age.age_interval[1] = interval_max; age.interval_prob = 1.0f; age.flag = true; }