// // Created by DefTruth on 2021/4/4. // #include "vgg16_gender.h" #include "lite/ort/core/ort_utils.h" #include "lite/utils.h" using ortcv::VGG16Gender; Ort::Value VGG16Gender::transform(const cv::Mat &mat) { cv::Mat canvas; cv::resize(mat, canvas, cv::Size(input_node_dims.at(3), input_node_dims.at(2))); cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB); // (1,3,224,224) return ortcv::utils::transform::create_tensor( canvas, input_node_dims, memory_info_handler, input_values_handler, ortcv::utils::transform::CHW); } void VGG16Gender::detect(const cv::Mat &mat, types::Gender &gender) { if (mat.empty()) return; // 1. make input tensor Ort::Value input_tensor = this->transform(mat); // 2. inference. auto output_tensors = ort_session->Run( Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs ); Ort::Value &gender_logits = output_tensors.at(0); // (1,2) auto gender_dims = output_node_dims.at(0); const unsigned int num_genders = gender_dims.at(1); // 2 unsigned int pred_gender = 0; const float *pred_logits = gender_logits.GetTensorMutableData(); auto softmax_probs = lite::utils::math::softmax(pred_logits, num_genders, pred_gender); gender.label = pred_gender; gender.text = gender_texts[pred_gender]; gender.score = softmax_probs[pred_gender]; gender.flag = true; }