Jiale/test2_ort/lite/ort/cv/mobilenetv2_68.cpp

54 lines
1.7 KiB
C++

//
// Created by DefTruth on 2021/7/27.
//
#include "mobilenetv2_68.h"
#include "lite/ort/core/ort_utils.h"
using ortcv::MobileNetV268;
Ort::Value MobileNetV268::transform(const cv::Mat &mat)
{
cv::Mat canvas;
cv::resize(mat, canvas, cv::Size(input_node_dims.at(3),
input_node_dims.at(2)));
cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB);
// (1,3,56,56)
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
void MobileNetV268::detect(const cv::Mat &mat, types::Landmarks &landmarks)
{
if (mat.empty()) return;
// this->transform(mat);
float img_height = static_cast<float>(mat.rows);
float img_width = static_cast<float>(mat.cols);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat);
// 2. inference
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. fetch landmarks.
Ort::Value &landmarks_norm = output_tensors.at(0); // (1,68*2)
auto landmark_dims = output_node_dims.at(0);
const unsigned int num_landmarks = landmark_dims.at(1);
for (unsigned int i = 0; i < num_landmarks; i += 2)
{
float x = landmarks_norm.At<float>({0, i});
float y = landmarks_norm.At<float>({0, i + 1});
x = std::min(std::max(0.f, x), 1.0f);
y = std::min(std::max(0.f, y), 1.0f);
landmarks.points.push_back(cv::Point2f(x * img_width, y * img_height));
}
landmarks.flag = true;
}