204 lines
6.6 KiB
C++
204 lines
6.6 KiB
C++
//
|
|
// Created by DefTruth on 2022/1/16.
|
|
//
|
|
|
|
#include "yolo5face.h"
|
|
#include "lite/ort/core/ort_utils.h"
|
|
|
|
using ortcv::YOLO5Face;
|
|
|
|
YOLO5Face::YOLO5Face(const std::string &_onnx_path, unsigned int _num_threads) :
|
|
BasicOrtHandler(_onnx_path, _num_threads)
|
|
{
|
|
}
|
|
|
|
Ort::Value YOLO5Face::transform(const cv::Mat &mat_rs)
|
|
{
|
|
cv::Mat canvas;
|
|
cv::cvtColor(mat_rs, canvas, cv::COLOR_BGR2RGB);
|
|
// (1,3,640,640) 1xCXHXW
|
|
ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32
|
|
return ortcv::utils::transform::create_tensor(
|
|
canvas, input_node_dims, memory_info_handler,
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
|
}
|
|
|
|
void YOLO5Face::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
|
|
int target_height, int target_width,
|
|
YOLO5FaceScaleParams &scale_params)
|
|
{
|
|
if (mat.empty()) return;
|
|
int img_height = static_cast<int>(mat.rows);
|
|
int img_width = static_cast<int>(mat.cols);
|
|
|
|
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
|
|
cv::Scalar(0, 0, 0));
|
|
// scale ratio (new / old) new_shape(h,w)
|
|
float w_r = (float) target_width / (float) img_width;
|
|
float h_r = (float) target_height / (float) img_height;
|
|
float r = std::min(w_r, h_r);
|
|
// compute padding
|
|
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
|
|
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
|
|
int pad_w = target_width - new_unpad_w; // >=0
|
|
int pad_h = target_height - new_unpad_h; // >=0
|
|
|
|
int dw = pad_w / 2;
|
|
int dh = pad_h / 2;
|
|
|
|
// resize with unscaling
|
|
cv::Mat new_unpad_mat = mat.clone();
|
|
cv::resize(new_unpad_mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
|
|
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
|
|
|
|
// record scale params.
|
|
scale_params.ratio = r;
|
|
scale_params.dw = dw;
|
|
scale_params.dh = dh;
|
|
scale_params.flag = true;
|
|
}
|
|
|
|
void YOLO5Face::detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
|
|
float score_threshold, float iou_threshold, unsigned int topk)
|
|
{
|
|
if (mat.empty()) return;
|
|
auto img_height = static_cast<float>(mat.rows);
|
|
auto img_width = static_cast<float>(mat.cols);
|
|
const int target_height = (int) input_node_dims.at(2);
|
|
const int target_width = (int) input_node_dims.at(3);
|
|
|
|
// resize & unscale
|
|
cv::Mat mat_rs;
|
|
YOLO5FaceScaleParams scale_params;
|
|
this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params);
|
|
|
|
// 1. make input tensor
|
|
Ort::Value input_tensor = this->transform(mat_rs);
|
|
// 2. inference scores & boxes.
|
|
auto output_tensors = ort_session->Run(
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
|
);
|
|
// 3. rescale & exclude.
|
|
std::vector<types::BoxfWithLandmarks> bbox_kps_collection;
|
|
this->generate_bboxes_kps(scale_params, bbox_kps_collection, output_tensors,
|
|
score_threshold, img_height, img_width);
|
|
// 4. hard nms with topk.
|
|
this->nms_bboxes_kps(bbox_kps_collection, detected_boxes_kps, iou_threshold, topk);
|
|
|
|
}
|
|
|
|
void YOLO5Face::generate_bboxes_kps(const YOLO5FaceScaleParams &scale_params,
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
|
|
std::vector<Ort::Value> &output_tensors, float score_threshold,
|
|
float img_height, float img_width)
|
|
{
|
|
Ort::Value &output = output_tensors.at(0); // (1,n,16=4+1+10+1)
|
|
auto output_dims = output_node_dims.at(0); // (1,n,16)
|
|
const unsigned int num_anchors = output_dims.at(1); // n = ?
|
|
const float *output_ptr = output.GetTensorMutableData<float>();
|
|
|
|
float r_ = scale_params.ratio;
|
|
int dw_ = scale_params.dw;
|
|
int dh_ = scale_params.dh;
|
|
|
|
bbox_kps_collection.clear();
|
|
unsigned int count = 0;
|
|
for (unsigned int i = 0; i < num_anchors; ++i)
|
|
{
|
|
const float *row_ptr = output_ptr + i * 16;
|
|
float obj_conf = row_ptr[4];
|
|
if (obj_conf < score_threshold) continue; // filter first.
|
|
float cls_conf = row_ptr[15];
|
|
if (cls_conf < score_threshold) continue; // face score.
|
|
|
|
// bounding box
|
|
const float *offsets = row_ptr;
|
|
float cx = offsets[0];
|
|
float cy = offsets[1];
|
|
float w = offsets[2];
|
|
float h = offsets[3];
|
|
|
|
types::BoxfWithLandmarks box_kps;
|
|
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
|
|
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
|
|
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
|
|
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
|
|
box_kps.box.x1 = std::max(0.f, x1);
|
|
box_kps.box.y1 = std::max(0.f, y1);
|
|
box_kps.box.x2 = std::min(img_width, x2);
|
|
box_kps.box.y2 = std::min(img_height, y2);
|
|
box_kps.box.score = cls_conf;
|
|
box_kps.box.label = 1;
|
|
box_kps.box.label_text = "face";
|
|
box_kps.box.flag = true;
|
|
|
|
// landmarks
|
|
const float *kps_offsets = row_ptr + 5;
|
|
for (unsigned int j = 0; j < 10; j += 2)
|
|
{
|
|
cv::Point2f kps;
|
|
float kps_x = (kps_offsets[j] - (float) dw_) / r_;
|
|
float kps_y = (kps_offsets[j + 1] - (float) dh_) / r_;
|
|
kps.x = std::min(std::max(0.f, kps_x), img_width);
|
|
kps.y = std::min(std::max(0.f, kps_y), img_height);
|
|
box_kps.landmarks.points.push_back(kps);
|
|
}
|
|
box_kps.landmarks.flag = true;
|
|
box_kps.flag = true;
|
|
|
|
bbox_kps_collection.push_back(box_kps);
|
|
|
|
count += 1; // limit boxes for nms.
|
|
if (count > max_nms)
|
|
break;
|
|
}
|
|
|
|
#if LITEORT_DEBUG
|
|
std::cout << "generate_bboxes_kps num: " << bbox_kps_collection.size() << "\n";
|
|
#endif
|
|
}
|
|
|
|
void YOLO5Face::nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
|
|
std::vector<types::BoxfWithLandmarks> &output,
|
|
float iou_threshold, unsigned int topk)
|
|
{
|
|
if (input.empty()) return;
|
|
std::sort(
|
|
input.begin(), input.end(),
|
|
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
|
|
{ return a.box.score > b.box.score; }
|
|
);
|
|
const unsigned int box_num = input.size();
|
|
std::vector<int> merged(box_num, 0);
|
|
|
|
unsigned int count = 0;
|
|
for (unsigned int i = 0; i < box_num; ++i)
|
|
{
|
|
if (merged[i]) continue;
|
|
std::vector<types::BoxfWithLandmarks> buf;
|
|
|
|
buf.push_back(input[i]);
|
|
merged[i] = 1;
|
|
|
|
for (unsigned int j = i + 1; j < box_num; ++j)
|
|
{
|
|
if (merged[j]) continue;
|
|
|
|
float iou = static_cast<float>(input[i].box.iou_of(input[j].box));
|
|
|
|
if (iou > iou_threshold)
|
|
{
|
|
merged[j] = 1;
|
|
buf.push_back(input[j]);
|
|
}
|
|
|
|
}
|
|
output.push_back(buf[0]);
|
|
|
|
// keep top k
|
|
count += 1;
|
|
if (count >= topk)
|
|
break;
|
|
}
|
|
} |