118 lines
3.3 KiB
C++
118 lines
3.3 KiB
C++
//
|
|
// Created by DefTruth on 2021/3/14.
|
|
//
|
|
|
|
#include "ultraface.h"
|
|
#include "lite/ort/core/ort_utils.h"
|
|
#include "lite/utils.h"
|
|
|
|
using ortcv::UltraFace;
|
|
|
|
Ort::Value UltraFace::transform(const cv::Mat &mat)
|
|
{
|
|
|
|
cv::Mat canvas;
|
|
cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB);
|
|
cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3),
|
|
input_node_dims.at(2)));
|
|
// (640,480) | (320,240) | (w,h) 1xCXHXW
|
|
|
|
ortcv::utils::transform::normalize_inplace(canvas, mean_val, scale_val); // float32
|
|
return ortcv::utils::transform::create_tensor(
|
|
canvas, input_node_dims, memory_info_handler,
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
|
}
|
|
|
|
void UltraFace::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
|
|
float score_threshold, float iou_threshold, unsigned int topk,
|
|
unsigned int nms_type)
|
|
{
|
|
if (mat.empty()) return;
|
|
// this->transform(mat);
|
|
float img_height = static_cast<float>(mat.rows);
|
|
float img_width = static_cast<float>(mat.cols);
|
|
|
|
// 1. make input tensor
|
|
Ort::Value input_tensor = this->transform(mat);
|
|
// 2. inference scores & boxes.
|
|
auto output_tensors = ort_session->Run(
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
|
);
|
|
// 3. rescale & exclude.
|
|
std::vector<types::Boxf> bbox_collection;
|
|
this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width);
|
|
// 4. hard|blend nms with topk.
|
|
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
|
|
}
|
|
|
|
void UltraFace::generate_bboxes(std::vector<types::Boxf> &bbox_collection,
|
|
std::vector<Ort::Value> &output_tensors,
|
|
float score_threshold, float img_height,
|
|
float img_width)
|
|
{
|
|
|
|
Ort::Value &scores = output_tensors.at(0);
|
|
Ort::Value &boxes = output_tensors.at(1);
|
|
auto scores_dims = output_node_dims.at(0); // (1,n,2)
|
|
const unsigned int num_anchors = scores_dims.at(1); // n = 17640 (640x480)
|
|
|
|
bbox_collection.clear();
|
|
unsigned int count = 0;
|
|
for (unsigned int i = 0; i < num_anchors; ++i)
|
|
{
|
|
float confidence = scores.At<float>({0, i, 1});
|
|
if (confidence < score_threshold) continue;
|
|
types::Boxf box;
|
|
box.x1 = boxes.At<float>({0, i, 0}) * img_width;
|
|
box.y1 = boxes.At<float>({0, i, 1}) * img_height;
|
|
box.x2 = boxes.At<float>({0, i, 2}) * img_width;
|
|
box.y2 = boxes.At<float>({0, i, 3}) * img_height;
|
|
box.score = confidence;
|
|
box.label_text = "face";
|
|
box.label = 1;
|
|
box.flag = true;
|
|
bbox_collection.push_back(box);
|
|
|
|
count += 1; // limit boxes for nms.
|
|
if (count > max_nms)
|
|
break;
|
|
}
|
|
#if LITEORT_DEBUG
|
|
std::cout << "detected num_anchors: " << num_anchors << "\n";
|
|
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
|
|
#endif
|
|
}
|
|
|
|
void UltraFace::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
|
|
float iou_threshold, unsigned int topk, unsigned int nms_type)
|
|
{
|
|
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
|
|
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
|
|
else lite::utils::hard_nms(input, output, iou_threshold, topk);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|