178 lines
6.5 KiB
C++
178 lines
6.5 KiB
C++
//
|
|
// Created by DefTruth on 2021/8/15.
|
|
//
|
|
|
|
#include "efficientdet_d8.h"
|
|
#include "lite/ort/core/ort_utils.h"
|
|
#include "lite/utils.h"
|
|
|
|
|
|
using ortcv::EfficientDetD8;
|
|
|
|
Ort::Value EfficientDetD8::transform(const cv::Mat &mat)
|
|
{
|
|
cv::Mat canvas;
|
|
cv::cvtColor(mat, canvas, cv::COLOR_BGR2RGB);
|
|
// resize without padding, todo: add padding as the official Python implementation.
|
|
cv::resize(canvas, canvas, cv::Size(input_node_dims.at(3),
|
|
input_node_dims.at(2)));
|
|
// (1,3,1536,1536) 1xCXHXW
|
|
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
|
|
canvas.convertTo(canvas, CV_32FC3, 1.0f / 255.f, 0.f);
|
|
return ortcv::utils::transform::create_tensor(
|
|
canvas, input_node_dims, memory_info_handler,
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
|
}
|
|
|
|
void EfficientDetD8::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
|
|
float score_threshold, float iou_threshold,
|
|
unsigned int topk, unsigned int nms_type)
|
|
{
|
|
if (mat.empty()) return;
|
|
float img_height = static_cast<float>(mat.rows);
|
|
float img_width = static_cast<float>(mat.cols);
|
|
|
|
// 1. make input tensor
|
|
Ort::Value input_tensor = this->transform(mat);
|
|
// 2. inference scores & boxes.
|
|
auto output_tensors = ort_session->Run(
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
|
);
|
|
// 3. rescale & exclude.
|
|
std::vector<types::Boxf> bbox_collection;
|
|
this->generate_bboxes(bbox_collection, output_tensors, score_threshold, img_height, img_width);
|
|
// 4. hard|blend|offset nms with topk.
|
|
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
|
|
}
|
|
|
|
// ref: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch/blob/master/efficientdet/utils.py
|
|
void EfficientDetD8::generate_anchors(const float target_height, const float target_width)
|
|
{
|
|
if (!anchors_buffer.empty()) return;
|
|
// generate once.
|
|
for (const auto &stride: strides)
|
|
{
|
|
// create grid with a specific stride. Under a specific stride,
|
|
// 9 Anchors of the same anchor point are stacked together in order
|
|
for (float yv = stride / 2.0f; yv < target_height; yv += stride)
|
|
{
|
|
for (float xv = stride / 2.0f; xv < target_width; xv += stride)
|
|
{
|
|
for (const auto &scale: scales)
|
|
{
|
|
for (const auto &ratio: ratios)
|
|
{
|
|
float base_anchor_size = anchor_scale * stride * scale;
|
|
// aw/2 and ah/2, according to input size with different ratio.
|
|
float anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0f;
|
|
float anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0f;
|
|
|
|
float y1 = yv - anchor_size_y_2; // cy - ah/2
|
|
float x1 = xv - anchor_size_x_2; // cx - aw/2
|
|
float y2 = yv + anchor_size_y_2; // cy + ah/2
|
|
float x2 = xv + anchor_size_x_2; // cx + aw/2
|
|
#ifdef LITE_WIN32
|
|
EfficientDetD8Anchor anchor;
|
|
anchor.y1 = y1;
|
|
anchor.x1 = x1;
|
|
anchor.y2 = y2;
|
|
anchor.x2 = x2;
|
|
anchors_buffer.push_back(anchor);
|
|
#else
|
|
anchors_buffer.push_back((EfficientDetD8Anchor) {y1, x1, y2, x2});
|
|
#endif
|
|
} // end ratios 3
|
|
} // end scale 3
|
|
}
|
|
} // end grid
|
|
} // end strides
|
|
}
|
|
|
|
|
|
void EfficientDetD8::generate_bboxes(std::vector<types::Boxf> &bbox_collection,
|
|
std::vector<Ort::Value> &output_tensors,
|
|
float score_threshold,
|
|
float img_height, float img_width)
|
|
{
|
|
Ort::Value ®ression = output_tensors.at(0); // (1,n,4) (dy, dx, dh, dw)]
|
|
Ort::Value &classification = output_tensors.at(1); // (1,n,90) 90 classes
|
|
auto reg_dims = output_node_dims.at(0); // (1,n,4)
|
|
auto cls_dims = output_node_dims.at(1); // (1,n,90)
|
|
const unsigned int num_anchors = reg_dims.at(1); // n = ?
|
|
const unsigned int num_classes = cls_dims.at(2); // 90
|
|
const float input_height = static_cast<float>(input_node_dims.at(2)); // e.g 512
|
|
const float input_width = static_cast<float>(input_node_dims.at(3)); // e.g 512
|
|
const float scale_height = img_height / input_height;
|
|
const float scale_width = img_width / input_width;
|
|
|
|
this->generate_anchors(input_height, input_width); // once
|
|
if (anchors_buffer.size() != num_anchors)
|
|
throw std::runtime_error("mismatch size for anchors_buffer and num_anchor.");
|
|
|
|
bbox_collection.clear();
|
|
unsigned int count = 0;
|
|
for (unsigned int i = 0; i < num_anchors; ++i)
|
|
{
|
|
float cls_conf = classification.At<float>({0, i, 0});
|
|
unsigned int label = 0;
|
|
for (unsigned int j = 0; j < num_classes; ++j)
|
|
{
|
|
float tmp_conf = classification.At<float>({0, i, j});
|
|
if (tmp_conf > cls_conf)
|
|
{
|
|
cls_conf = tmp_conf;
|
|
label = j;
|
|
}
|
|
} // argmax
|
|
if (cls_conf < score_threshold) continue; // filter
|
|
|
|
float ay1 = anchors_buffer.at(i).y1;
|
|
float ax1 = anchors_buffer.at(i).x1;
|
|
float ay2 = anchors_buffer.at(i).y2;
|
|
float ax2 = anchors_buffer.at(i).x2;
|
|
float cya = (ay1 + ay2) / 2.0f; // center
|
|
float cxa = (ax1 + ax2) / 2.0f;
|
|
float ha = ay2 - ay1;
|
|
float wa = ax2 - ax1;
|
|
|
|
float dy = regression.At<float>({0, i, 0});
|
|
float dx = regression.At<float>({0, i, 1});
|
|
float dh = regression.At<float>({0, i, 2});
|
|
float dw = regression.At<float>({0, i, 3});
|
|
|
|
float cx = dx * wa + cxa;
|
|
float cy = dy * ha + cya;
|
|
float w = std::exp(dw) * wa;
|
|
float h = std::exp(dh) * ha;
|
|
|
|
types::Boxf box;
|
|
box.x1 = (cx - w / 2.f) * scale_width;
|
|
box.y1 = (cy - h / 2.f) * scale_height;
|
|
box.x2 = (cx + w / 2.f) * scale_width;
|
|
box.y2 = (cy + h / 2.f) * scale_height;
|
|
box.score = cls_conf;
|
|
box.label = label;
|
|
box.label_text = class_names[label];
|
|
box.flag = true;
|
|
bbox_collection.push_back(box);
|
|
|
|
count += 1; // limit boxes for nms.
|
|
if (count > max_nms)
|
|
break;
|
|
}
|
|
#if LITEORT_DEBUG
|
|
std::cout << "detected num_anchors: " << num_anchors << "\n";
|
|
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
|
|
#endif
|
|
}
|
|
|
|
|
|
void EfficientDetD8::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
|
|
float iou_threshold, unsigned int topk, unsigned int nms_type)
|
|
{
|
|
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
|
|
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
|
|
else lite::utils::hard_nms(input, output, iou_threshold, topk);
|
|
}
|