106 lines
4.1 KiB
C++
106 lines
4.1 KiB
C++
//
|
|
// Created by DefTruth on 2021/12/30.
|
|
//
|
|
|
|
#ifndef LITE_AI_TOOLKIT_ORT_CV_SCRFD_H
|
|
#define LITE_AI_TOOLKIT_ORT_CV_SCRFD_H
|
|
|
|
#include "lite/ort/core/ort_core.h"
|
|
|
|
namespace ortcv
|
|
{
|
|
// https://github.com/deepinsight/insightface/blob/master/detection/scrfd/
|
|
// mmdet/core/anchor/anchor_generator.py
|
|
class LITE_EXPORTS SCRFD : public BasicOrtHandler
|
|
{
|
|
public:
|
|
explicit SCRFD(const std::string &_onnx_path, unsigned int _num_threads = 1);
|
|
|
|
~SCRFD() override = default;
|
|
|
|
private:
|
|
// nested classes
|
|
typedef struct
|
|
{
|
|
float cx;
|
|
float cy;
|
|
float stride;
|
|
} SCRFDPoint;
|
|
typedef struct
|
|
{
|
|
float ratio;
|
|
int dw;
|
|
int dh;
|
|
bool flag;
|
|
} SCRFDScaleParams;
|
|
|
|
private:
|
|
// blob = cv2.dnn.blobFromImage(img, 1.0/128, input_size, (127.5, 127.5, 127.5), swapRB=True)
|
|
const float mean_vals[3] = {127.5f, 127.5f, 127.5f}; // RGB
|
|
const float scale_vals[3] = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f};
|
|
unsigned int fmc = 3; // feature map count
|
|
bool use_kps = false;
|
|
unsigned int num_anchors = 2;
|
|
std::vector<int> feat_stride_fpn = {8, 16, 32}; // steps, may [8, 16, 32, 64, 128]
|
|
// if num_anchors>1, then stack points in col major -> (height*num_anchor*width,2)
|
|
// anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
|
|
std::unordered_map<int, std::vector<SCRFDPoint>> center_points;
|
|
bool center_points_is_update = false;
|
|
static constexpr const unsigned int nms_pre = 1000;
|
|
static constexpr const unsigned int max_nms = 30000;
|
|
|
|
private:
|
|
Ort::Value transform(const cv::Mat &mat_rs) override; // without resize
|
|
|
|
// initial steps and num_anchors
|
|
// https://github.com/deepinsight/insightface/blob/master/detection/scrfd/tools/scrfd.py
|
|
void initial_context();
|
|
|
|
void resize_unscale(const cv::Mat &mat,
|
|
cv::Mat &mat_rs,
|
|
int target_height,
|
|
int target_width,
|
|
SCRFDScaleParams &scale_params);
|
|
|
|
// generate once.
|
|
void generate_points(const int target_height, const int target_width);
|
|
|
|
void generate_bboxes_single_stride(const SCRFDScaleParams &scale_params,
|
|
Ort::Value &score_pred,
|
|
Ort::Value &bbox_pred,
|
|
unsigned int stride,
|
|
float score_threshold,
|
|
float img_height,
|
|
float img_width,
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection);
|
|
|
|
void generate_bboxes_kps_single_stride(const SCRFDScaleParams &scale_params,
|
|
Ort::Value &score_pred,
|
|
Ort::Value &bbox_pred,
|
|
Ort::Value &kps_pred,
|
|
unsigned int stride,
|
|
float score_threshold,
|
|
float img_height,
|
|
float img_width,
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection);
|
|
|
|
void generate_bboxes_kps(const SCRFDScaleParams &scale_params,
|
|
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
|
|
std::vector<Ort::Value> &output_tensors,
|
|
float score_threshold, float img_height,
|
|
float img_width); // rescale & exclude
|
|
|
|
void nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
|
|
std::vector<types::BoxfWithLandmarks> &output,
|
|
float iou_threshold, unsigned int topk);
|
|
|
|
public:
|
|
void detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
|
|
float score_threshold = 0.3f, float iou_threshold = 0.45f,
|
|
unsigned int topk = 400);
|
|
|
|
};
|
|
}
|
|
|
|
#endif //LITE_AI_TOOLKIT_ORT_CV_SCRFD_H
|