43 lines
1.4 KiB
C++
43 lines
1.4 KiB
C++
//
|
|
// Created by DefTruth on 2021/4/4.
|
|
//
|
|
|
|
#include "vgg16_gender.h"
|
|
#include "lite/ort/core/ort_utils.h"
|
|
#include "lite/utils.h"
|
|
|
|
using ortcv::VGG16Gender;
|
|
|
|
Ort::Value VGG16Gender::transform(const cv::Mat &mat)
|
|
{
|
|
cv::Mat canvas;
|
|
cv::resize(mat, canvas, cv::Size(input_node_dims.at(3),
|
|
input_node_dims.at(2)));
|
|
cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB); // (1,3,224,224)
|
|
|
|
return ortcv::utils::transform::create_tensor(
|
|
canvas, input_node_dims, memory_info_handler,
|
|
input_values_handler, ortcv::utils::transform::CHW);
|
|
}
|
|
|
|
void VGG16Gender::detect(const cv::Mat &mat, types::Gender &gender)
|
|
{
|
|
if (mat.empty()) return;
|
|
// 1. make input tensor
|
|
Ort::Value input_tensor = this->transform(mat);
|
|
// 2. inference.
|
|
auto output_tensors = ort_session->Run(
|
|
Ort::RunOptions{nullptr}, input_node_names.data(),
|
|
&input_tensor, 1, output_node_names.data(), num_outputs
|
|
);
|
|
Ort::Value &gender_logits = output_tensors.at(0); // (1,2)
|
|
auto gender_dims = output_node_dims.at(0);
|
|
const unsigned int num_genders = gender_dims.at(1); // 2
|
|
unsigned int pred_gender = 0;
|
|
const float *pred_logits = gender_logits.GetTensorMutableData<float>();
|
|
auto softmax_probs = lite::utils::math::softmax<float>(pred_logits, num_genders, pred_gender);
|
|
gender.label = pred_gender;
|
|
gender.text = gender_texts[pred_gender];
|
|
gender.score = softmax_probs[pred_gender];
|
|
gender.flag = true;
|
|
} |