Langchain-Chatchat/libs/chatchat-server/chatchat/server/chat/chat.py

284 lines
11 KiB
Python
Raw Normal View History

2024-12-20 16:04:03 +08:00
import asyncio
import json
import uuid
from typing import AsyncIterable, List
from fastapi import Body
from langchain.chains import LLMChain
from langchain.prompts.chat import ChatPromptTemplate
from langchain_core.messages import AIMessage, HumanMessage, convert_to_messages
from sse_starlette.sse import EventSourceResponse
from chatchat.settings import Settings
from chatchat.server.agent.agent_factory.agents_registry import agents_registry
from chatchat.server.api_server.api_schemas import OpenAIChatOutput
from chatchat.server.callback_handler.agent_callback_handler import (
AgentExecutorAsyncIteratorCallbackHandler,
AgentStatus,
)
from chatchat.server.chat.utils import History
from chatchat.server.memory.conversation_db_buffer_memory import (
ConversationBufferDBMemory,
)
from chatchat.server.utils import (
MsgType,
get_ChatOpenAI,
get_prompt_template,
get_tool,
wrap_done,
get_default_llm,
build_logger,
)
logger = build_logger()
def create_models_from_config(configs, callbacks, stream, max_tokens):
configs = configs or Settings.model_settings.LLM_MODEL_CONFIG
models = {}
prompts = {}
for model_type, params in configs.items():
model_name = params.get("model", "").strip() or get_default_llm()
callbacks = callbacks if params.get("callbacks", False) else None
# 判断是否传入 max_tokens 的值, 如果传入就按传入的赋值(api 调用且赋值), 如果没有传入则按照初始化配置赋值(ui 调用或 api 调用未赋值)
max_tokens_value = max_tokens if max_tokens is not None else params.get("max_tokens", 1000)
model_instance = get_ChatOpenAI(
model_name=model_name,
temperature=params.get("temperature", 0.5),
max_tokens=max_tokens_value,
callbacks=callbacks,
streaming=stream,
local_wrap=True,
)
models[model_type] = model_instance
prompt_name = params.get("prompt_name", "default")
prompt_template = get_prompt_template(type=model_type, name=prompt_name)
prompts[model_type] = prompt_template
2025-01-05 18:31:03 +08:00
logger.info(f"model_type:{model_type}, model_name:{model_name}, prompt_name:{prompt_name}")
2024-12-20 16:04:03 +08:00
return models, prompts
def create_models_chains(
history, history_len, prompts, models, tools, callbacks, conversation_id, metadata
):
memory = None
chat_prompt = None
if history:
history = [History.from_data(h) for h in history]
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(
False
)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg]
)
2025-01-05 18:31:03 +08:00
logger.info(f"history_len:{history_len},chat_prompt:{chat_prompt}")
2024-12-20 16:04:03 +08:00
elif conversation_id and history_len > 0:
memory = ConversationBufferDBMemory(
conversation_id=conversation_id,
llm=models["llm_model"],
message_limit=history_len,
)
2025-01-05 18:31:03 +08:00
logger.info(f"conversation_id:{conversation_id}")
2024-12-20 16:04:03 +08:00
else:
input_msg = History(role="user", content=prompts["llm_model"]).to_msg_template(
False
)
chat_prompt = ChatPromptTemplate.from_messages([input_msg])
2025-01-05 18:31:03 +08:00
logger.info(f"chat_prompt:{chat_prompt}")
2024-12-20 16:04:03 +08:00
if "action_model" in models and tools:
llm = models["action_model"]
llm.callbacks = callbacks
agent_executor = agents_registry(
llm=llm, callbacks=callbacks, tools=tools, prompt=None, verbose=True
)
full_chain = {"input": lambda x: x["input"]} | agent_executor
else:
llm = models["llm_model"]
llm.callbacks = callbacks
chain = LLMChain(prompt=chat_prompt, llm=llm, memory=memory)
full_chain = {"input": lambda x: x["input"]} | chain
return full_chain
async def chat(
query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
metadata: dict = Body({}, description="附件,可能是图像或者其他功能", examples=[]),
conversation_id: str = Body("", description="对话框ID"),
message_id: str = Body(None, description="数据库消息ID"),
history_len: int = Body(-1, description="从数据库中取历史消息的数量"),
history: List[History] = Body(
[],
description="历史对话,设为一个整数可以从数据库中读取历史消息",
examples=[
[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"},
]
],
),
stream: bool = Body(True, description="流式输出"),
chat_model_config: dict = Body({}, description="LLM 模型配置", examples=[]),
tool_config: dict = Body({}, description="工具配置", examples=[]),
max_tokens: int = Body(None, description="LLM最大token数配置", example=4096),
):
"""Agent 对话"""
2025-01-05 18:31:03 +08:00
# logger.info(f"query:{query},metadata:{metadata}, conversation_id:{conversation_id},message_id:{message_id},stream:{stream},chat_model_config:{chat_model_config}"
# f"tool_config:{tool_config}, max_tokens:{max_tokens}")
2024-12-20 16:04:03 +08:00
async def chat_iterator() -> AsyncIterable[OpenAIChatOutput]:
try:
callback = AgentExecutorAsyncIteratorCallbackHandler()
callbacks = [callback]
# Enable langchain-chatchat to support langfuse
import os
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
langfuse_host = os.environ.get("LANGFUSE_HOST")
if langfuse_secret_key and langfuse_public_key and langfuse_host:
from langfuse import Langfuse
from langfuse.callback import CallbackHandler
langfuse_handler = CallbackHandler()
callbacks.append(langfuse_handler)
2025-01-05 18:31:03 +08:00
logger.info(f"langfuse_secret_key:{langfuse_secret_key}, langfuse_public_key:{langfuse_public_key},langfuse_host:{langfuse_host}")
2024-12-20 16:04:03 +08:00
models, prompts = create_models_from_config(
callbacks=callbacks, configs=chat_model_config, stream=stream, max_tokens=max_tokens
)
all_tools = get_tool().values()
2025-01-05 18:31:03 +08:00
logger.info(f"all_tools:{all_tools}")
logger.info(f"metadata:{metadata}")
2024-12-20 16:04:03 +08:00
tools = [tool for tool in all_tools if tool.name in tool_config]
tools = [t.copy(update={"callbacks": callbacks}) for t in tools]
full_chain = create_models_chains(
prompts=prompts,
models=models,
conversation_id=conversation_id,
tools=tools,
callbacks=callbacks,
history=history,
history_len=history_len,
metadata=metadata,
)
_history = [History.from_data(h) for h in history]
chat_history = [h.to_msg_tuple() for h in _history]
history_message = convert_to_messages(chat_history)
task = asyncio.create_task(
wrap_done(
full_chain.ainvoke(
{
"input": query,
"chat_history": history_message,
}
),
callback.done,
)
)
last_tool = {}
async for chunk in callback.aiter():
data = json.loads(chunk)
data["tool_calls"] = []
data["message_type"] = MsgType.TEXT
if data["status"] == AgentStatus.tool_start:
last_tool = {
"index": 0,
"id": data["run_id"],
"type": "function",
"function": {
"name": data["tool"],
"arguments": data["tool_input"],
},
"tool_output": None,
"is_error": False,
}
data["tool_calls"].append(last_tool)
if data["status"] in [AgentStatus.tool_end]:
last_tool.update(
tool_output=data["tool_output"],
is_error=data.get("is_error", False),
)
data["tool_calls"] = [last_tool]
last_tool = {}
try:
tool_output = json.loads(data["tool_output"])
if message_type := tool_output.get("message_type"):
data["message_type"] = message_type
except:
...
elif data["status"] == AgentStatus.agent_finish:
try:
tool_output = json.loads(data["text"])
if message_type := tool_output.get("message_type"):
data["message_type"] = message_type
except:
...
text_value = data.get("text", "")
content = text_value if isinstance(text_value, str) else str(text_value)
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion.chunk",
content=content,
role="assistant",
tool_calls=data["tool_calls"],
model=models["llm_model"].model_name,
status=data["status"],
message_type=data["message_type"],
message_id=message_id,
)
yield ret.model_dump_json()
# yield OpenAIChatOutput( # return blank text lastly
# id=f"chat{uuid.uuid4()}",
# object="chat.completion.chunk",
# content="",
# role="assistant",
# model=models["llm_model"].model_name,
# status = data["status"],
# message_type = data["message_type"],
# message_id=message_id,
# )
await task
except asyncio.exceptions.CancelledError:
logger.warning("streaming progress has been interrupted by user.")
return
except Exception as e:
logger.error(f"error in chat: {e}")
yield {"data": json.dumps({"error": str(e)})}
return
if stream:
return EventSourceResponse(chat_iterator())
else:
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion",
content="",
role="assistant",
finish_reason="stop",
tool_calls=[],
status=AgentStatus.agent_finish,
message_type=MsgType.TEXT,
message_id=message_id,
)
async for chunk in chat_iterator():
data = json.loads(chunk)
if text := data["choices"][0]["delta"]["content"]:
ret.content += text
if data["status"] == AgentStatus.tool_end:
ret.tool_calls += data["choices"][0]["delta"]["tool_calls"]
ret.model = data["model"]
ret.created = data["created"]
return ret.model_dump()