103 lines
4.0 KiB
Python
103 lines
4.0 KiB
Python
|
|
from typing import List
|
|||
|
|
|
|||
|
|
import cv2
|
|||
|
|
import numpy as np
|
|||
|
|
import tqdm
|
|||
|
|
from langchain_community.document_loaders.unstructured import UnstructuredFileLoader
|
|||
|
|
from PIL import Image
|
|||
|
|
|
|||
|
|
from chatchat.settings import Settings
|
|||
|
|
from chatchat.server.file_rag.document_loaders.ocr import get_ocr
|
|||
|
|
|
|||
|
|
|
|||
|
|
class RapidOCRPDFLoader(UnstructuredFileLoader):
|
|||
|
|
def _get_elements(self) -> List:
|
|||
|
|
def rotate_img(img, angle):
|
|||
|
|
"""
|
|||
|
|
img --image
|
|||
|
|
angle --rotation angle
|
|||
|
|
return--rotated img
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
h, w = img.shape[:2]
|
|||
|
|
rotate_center = (w / 2, h / 2)
|
|||
|
|
# 获取旋转矩阵
|
|||
|
|
# 参数1为旋转中心点;
|
|||
|
|
# 参数2为旋转角度,正值-逆时针旋转;负值-顺时针旋转
|
|||
|
|
# 参数3为各向同性的比例因子,1.0原图,2.0变成原来的2倍,0.5变成原来的0.5倍
|
|||
|
|
M = cv2.getRotationMatrix2D(rotate_center, angle, 1.0)
|
|||
|
|
# 计算图像新边界
|
|||
|
|
new_w = int(h * np.abs(M[0, 1]) + w * np.abs(M[0, 0]))
|
|||
|
|
new_h = int(h * np.abs(M[0, 0]) + w * np.abs(M[0, 1]))
|
|||
|
|
# 调整旋转矩阵以考虑平移
|
|||
|
|
M[0, 2] += (new_w - w) / 2
|
|||
|
|
M[1, 2] += (new_h - h) / 2
|
|||
|
|
|
|||
|
|
rotated_img = cv2.warpAffine(img, M, (new_w, new_h))
|
|||
|
|
return rotated_img
|
|||
|
|
|
|||
|
|
def pdf2text(filepath):
|
|||
|
|
import fitz # pyMuPDF里面的fitz包,不要与pip install fitz混淆
|
|||
|
|
import numpy as np
|
|||
|
|
|
|||
|
|
ocr = get_ocr()
|
|||
|
|
doc = fitz.open(filepath)
|
|||
|
|
resp = ""
|
|||
|
|
|
|||
|
|
b_unit = tqdm.tqdm(
|
|||
|
|
total=doc.page_count, desc="RapidOCRPDFLoader context page index: 0"
|
|||
|
|
)
|
|||
|
|
for i, page in enumerate(doc):
|
|||
|
|
b_unit.set_description(
|
|||
|
|
"RapidOCRPDFLoader context page index: {}".format(i)
|
|||
|
|
)
|
|||
|
|
b_unit.refresh()
|
|||
|
|
text = page.get_text("")
|
|||
|
|
resp += text + "\n"
|
|||
|
|
|
|||
|
|
img_list = page.get_image_info(xrefs=True)
|
|||
|
|
for img in img_list:
|
|||
|
|
if xref := img.get("xref"):
|
|||
|
|
bbox = img["bbox"]
|
|||
|
|
# 检查图片尺寸是否超过设定的阈值
|
|||
|
|
if (bbox[2] - bbox[0]) / (page.rect.width) < Settings.kb_settings.PDF_OCR_THRESHOLD[
|
|||
|
|
0
|
|||
|
|
] or (bbox[3] - bbox[1]) / (
|
|||
|
|
page.rect.height
|
|||
|
|
) < Settings.kb_settings.PDF_OCR_THRESHOLD[1]:
|
|||
|
|
continue
|
|||
|
|
pix = fitz.Pixmap(doc, xref)
|
|||
|
|
samples = pix.samples
|
|||
|
|
if int(page.rotation) != 0: # 如果Page有旋转角度,则旋转图片
|
|||
|
|
img_array = np.frombuffer(
|
|||
|
|
pix.samples, dtype=np.uint8
|
|||
|
|
).reshape(pix.height, pix.width, -1)
|
|||
|
|
tmp_img = Image.fromarray(img_array)
|
|||
|
|
ori_img = cv2.cvtColor(np.array(tmp_img), cv2.COLOR_RGB2BGR)
|
|||
|
|
rot_img = rotate_img(img=ori_img, angle=360 - page.rotation)
|
|||
|
|
img_array = cv2.cvtColor(rot_img, cv2.COLOR_RGB2BGR)
|
|||
|
|
else:
|
|||
|
|
img_array = np.frombuffer(
|
|||
|
|
pix.samples, dtype=np.uint8
|
|||
|
|
).reshape(pix.height, pix.width, -1)
|
|||
|
|
|
|||
|
|
result, _ = ocr(img_array)
|
|||
|
|
if result:
|
|||
|
|
ocr_result = [line[1] for line in result]
|
|||
|
|
resp += "\n".join(ocr_result)
|
|||
|
|
|
|||
|
|
# 更新进度
|
|||
|
|
b_unit.update(1)
|
|||
|
|
return resp
|
|||
|
|
|
|||
|
|
text = pdf2text(self.file_path)
|
|||
|
|
from unstructured.partition.text import partition_text
|
|||
|
|
|
|||
|
|
return partition_text(text=text, **self.unstructured_kwargs)
|
|||
|
|
|
|||
|
|
|
|||
|
|
if __name__ == "__main__":
|
|||
|
|
loader = RapidOCRPDFLoader(file_path="/Users/tonysong/Desktop/test.pdf")
|
|||
|
|
docs = loader.load()
|
|||
|
|
print(docs)
|