Langchain-Chatchat/libs/chatchat-server/chatchat/server/knowledge_base/migrate.py

239 lines
8.9 KiB
Python
Raw Normal View History

2024-12-20 16:04:03 +08:00
import os
from datetime import datetime
from typing import List, Literal
from dateutil.parser import parse
from chatchat.settings import Settings
from chatchat.server.db.base import Base, engine
from chatchat.server.db.models.conversation_model import ConversationModel
from chatchat.server.db.models.message_model import MessageModel
from chatchat.server.db.repository.knowledge_file_repository import (
add_file_to_db,
)
# ensure Models are imported
from chatchat.server.db.repository.knowledge_metadata_repository import (
add_summary_to_db,
)
from chatchat.server.db.session import session_scope
from chatchat.server.knowledge_base.kb_service.base import (
KBServiceFactory,
SupportedVSType,
)
from chatchat.server.knowledge_base.utils import (
KnowledgeFile,
files2docs_in_thread,
get_file_path,
list_files_from_folder,
list_kbs_from_folder,
)
from chatchat.utils import build_logger
from chatchat.server.utils import get_default_embedding
logger = build_logger()
def create_tables():
Base.metadata.create_all(bind=engine)
def reset_tables():
Base.metadata.drop_all(bind=engine)
create_tables()
def import_from_db(
sqlite_path: str = None,
# csv_path: str = None,
) -> bool:
"""
在知识库与向量库无变化的情况下从备份数据库中导入数据到 info.db
适用于版本升级时info.db 结构变化但无需重新向量化的情况
请确保两边数据库表名一致需要导入的字段名一致
当前仅支持 sqlite
"""
import sqlite3 as sql
from pprint import pprint
models = list(Base.registry.mappers)
try:
con = sql.connect(sqlite_path)
con.row_factory = sql.Row
cur = con.cursor()
tables = [
x["name"]
for x in cur.execute(
"select name from sqlite_master where type='table'"
).fetchall()
]
for model in models:
table = model.local_table.fullname
if table not in tables:
continue
print(f"processing table: {table}")
with session_scope() as session:
for row in cur.execute(f"select * from {table}").fetchall():
data = {k: row[k] for k in row.keys() if k in model.columns}
if "create_time" in data:
data["create_time"] = parse(data["create_time"])
pprint(data)
session.add(model.class_(**data))
con.close()
return True
except Exception as e:
print(f"无法读取备份数据库:{sqlite_path}。错误信息:{e}")
return False
def file_to_kbfile(kb_name: str, files: List[str]) -> List[KnowledgeFile]:
kb_files = []
for file in files:
try:
kb_file = KnowledgeFile(filename=file, knowledge_base_name=kb_name)
kb_files.append(kb_file)
except Exception as e:
msg = f"{e},已跳过"
logger.error(f"{e.__class__.__name__}: {msg}")
return kb_files
def folder2db(
kb_names: List[str],
mode: Literal["recreate_vs", "update_in_db", "increment"],
vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = Settings.kb_settings.DEFAULT_VS_TYPE,
embed_model: str = get_default_embedding(),
chunk_size: int = Settings.kb_settings.CHUNK_SIZE,
chunk_overlap: int = Settings.kb_settings.OVERLAP_SIZE,
zh_title_enhance: bool = Settings.kb_settings.ZH_TITLE_ENHANCE,
):
"""
use existed files in local folder to populate database and/or vector store.
set parameter `mode` to:
recreate_vs: recreate all vector store and fill info to database using existed files in local folder
fill_info_only(disabled): do not create vector store, fill info to db using existed files only
update_in_db: update vector store and database info using local files that existed in database only
increment: create vector store and database info for local files that not existed in database only
"""
def files2vs(kb_name: str, kb_files: List[KnowledgeFile]) -> List:
result = []
for success, res in files2docs_in_thread(
kb_files,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance,
):
if success:
_, filename, docs = res
print(
f"正在将 {kb_name}/{filename} 添加到向量库,共包含{len(docs)}条文档"
)
kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
kb_file.splited_docs = docs
kb.add_doc(kb_file=kb_file, not_refresh_vs_cache=True)
result.append({"kb_name": kb_name, "file": filename, "docs": docs})
else:
print(res)
return result
kb_names = kb_names or list_kbs_from_folder()
for kb_name in kb_names:
start = datetime.now()
kb = KBServiceFactory.get_service(kb_name, vs_type, embed_model)
if not kb.exists():
kb.create_kb()
# 清除向量库,从本地文件重建
if mode == "recreate_vs":
kb.clear_vs()
kb.create_kb()
kb_files = file_to_kbfile(kb_name, list_files_from_folder(kb_name))
result = files2vs(kb_name, kb_files)
kb.save_vector_store()
# # 不做文件内容的向量化,仅将文件元信息存到数据库
# # 由于现在数据库存了很多与文本切分相关的信息,单纯存储文件信息意义不大,该功能取消。
# elif mode == "fill_info_only":
# files = list_files_from_folder(kb_name)
# kb_files = file_to_kbfile(kb_name, files)
# for kb_file in kb_files:
# add_file_to_db(kb_file)
# print(f"已将 {kb_name}/{kb_file.filename} 添加到数据库")
# 以数据库中文件列表为基准,利用本地文件更新向量库
elif mode == "update_in_db":
files = kb.list_files()
kb_files = file_to_kbfile(kb_name, files)
result = files2vs(kb_name, kb_files)
kb.save_vector_store()
# 对比本地目录与数据库中的文件列表,进行增量向量化
elif mode == "increment":
db_files = kb.list_files()
folder_files = list_files_from_folder(kb_name)
files = list(set(folder_files) - set(db_files))
kb_files = file_to_kbfile(kb_name, files)
result = files2vs(kb_name, kb_files)
kb.save_vector_store()
else:
print(f"unsupported migrate mode: {mode}")
end = datetime.now()
kb_path = (
f"知识库路径\t{kb.kb_path}\n"
if kb.vs_type() == SupportedVSType.FAISS
else ""
)
file_count = len(kb_files)
success_count = len(result)
docs_count = sum([len(x["docs"]) for x in result])
print("\n" + "-" * 100)
print(
(
f"知识库名称\t{kb_name}\n"
f"知识库类型\t{kb.vs_type()}\n"
f"向量模型:\t{kb.embed_model}\n"
)
+ kb_path
+ (
f"文件总数量\t{file_count}\n"
f"入库文件数\t{success_count}\n"
f"知识条目数\t{docs_count}\n"
f"用时\t\t{end-start}"
)
)
print("-" * 100 + "\n")
def prune_db_docs(kb_names: List[str]):
"""
delete docs in database that not existed in local folder.
it is used to delete database docs after user deleted some doc files in file browser
"""
for kb_name in kb_names:
kb = KBServiceFactory.get_service_by_name(kb_name)
if kb is not None:
files_in_db = kb.list_files()
files_in_folder = list_files_from_folder(kb_name)
files = list(set(files_in_db) - set(files_in_folder))
kb_files = file_to_kbfile(kb_name, files)
for kb_file in kb_files:
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
print(f"success to delete docs for file: {kb_name}/{kb_file.filename}")
kb.save_vector_store()
def prune_folder_files(kb_names: List[str]):
"""
delete doc files in local folder that not existed in database.
it is used to free local disk space by delete unused doc files.
"""
for kb_name in kb_names:
kb = KBServiceFactory.get_service_by_name(kb_name)
if kb is not None:
files_in_db = kb.list_files()
files_in_folder = list_files_from_folder(kb_name)
files = list(set(files_in_folder) - set(files_in_db))
for file in files:
os.remove(get_file_path(kb_name, file))
print(f"success to delete file: {kb_name}/{file}")