Langchain-Chatchat/libs/chatchat-server/chatchat/server/chat/completion.py

83 lines
3.1 KiB
Python
Raw Normal View History

2024-12-20 16:04:03 +08:00
import asyncio
from typing import AsyncIterable, Optional
from fastapi import Body
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from sse_starlette.sse import EventSourceResponse
from chatchat.server.utils import get_OpenAI, get_prompt_template, wrap_done, build_logger
logger = build_logger()
async def completion(
query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
stream: bool = Body(False, description="流式输出"),
echo: bool = Body(False, description="除了输出之外,还回显输入"),
model_name: str = Body(None, description="LLM 模型名称。"),
temperature: float = Body(0.01, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(
1024, description="限制LLM生成Token数量默认None代表模型最大值"
),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body(
"default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
),
):
# TODO: 因ApiModelWorker 默认是按chat处理的会对params["prompt"] 解析为messages因此ApiModelWorker 使用时需要有相应处理
async def completion_iterator(
query: str,
model_name: str = None,
prompt_name: str = prompt_name,
echo: bool = echo,
) -> AsyncIterable[str]:
try:
nonlocal max_tokens
callback = AsyncIteratorCallbackHandler()
if isinstance(max_tokens, int) and max_tokens <= 0:
max_tokens = None
2025-01-05 18:31:03 +08:00
logger.info(f"model_name:{model_name, prompt_name:{prompt_name}, echo:{echo}}")
2024-12-20 16:04:03 +08:00
model = get_OpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
echo=echo,
local_wrap=True,
)
prompt_template = get_prompt_template("llm_model", prompt_name)
prompt = PromptTemplate.from_template(prompt_template, template_format="jinja2")
2025-01-05 18:31:03 +08:00
logger.info(f"prompt_template:{prompt}")
2024-12-20 16:04:03 +08:00
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(
wrap_done(chain.acall({"input": query}), callback.done),
)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
else:
answer = ""
async for token in callback.aiter():
answer += token
yield answer
await task
except asyncio.exceptions.CancelledError:
logger.warning("streaming progress has been interrupted by user.")
return
return EventSourceResponse(
completion_iterator(
query=query, model_name=model_name, prompt_name=prompt_name
),
)