Langchain-Chatchat/libs/chatchat-server/chatchat/server/chat/kb_chat.py

248 lines
12 KiB
Python
Raw Normal View History

2024-12-20 16:04:03 +08:00
from __future__ import annotations
import asyncio, json
import uuid
from typing import AsyncIterable, List, Optional, Literal
from fastapi import Body, Request
from fastapi.concurrency import run_in_threadpool
from sse_starlette.sse import EventSourceResponse
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
from chatchat.settings import Settings
from chatchat.server.agent.tools_factory.search_internet import search_engine
from chatchat.server.api_server.api_schemas import OpenAIChatOutput
from chatchat.server.chat.utils import History
from chatchat.server.knowledge_base.kb_service.base import KBServiceFactory
from chatchat.server.knowledge_base.kb_doc_api import search_docs, search_temp_docs
from chatchat.server.knowledge_base.utils import format_reference
from chatchat.server.utils import (wrap_done, get_ChatOpenAI, get_default_llm,
BaseResponse, get_prompt_template, build_logger,
check_embed_model, api_address
)
import time
2024-12-20 16:04:03 +08:00
logger = build_logger()
async def kb_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
mode: Literal["local_kb", "temp_kb", "search_engine"] = Body("local_kb", description="知识来源"),
kb_name: str = Body("", description="mode=local_kb时为知识库名称temp_kb时为临时知识库IDsearch_engine时为搜索引擎名称", examples=["samples"]),
top_k: int = Body(Settings.kb_settings.VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(
Settings.kb_settings.SCORE_THRESHOLD,
description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右",
ge=0,
le=2,
),
history: List[History] = Body(
[],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(True, description="流式输出"),
model: str = Body(get_default_llm(), description="LLM 模型名称。"),
temperature: float = Body(Settings.model_settings.TEMPERATURE, description="LLM 采样温度", ge=0.0, le=2.0),
max_tokens: Optional[int] = Body(
Settings.model_settings.MAX_TOKENS,
description="限制LLM生成Token数量默认None代表模型最大值"
),
prompt_name: str = Body(
"default",
description="使用的prompt模板名称(在prompt_settings.yaml中配置)"
),
return_direct: bool = Body(False, description="直接返回检索结果,不送入 LLM"),
request: Request = None,
):
logger.info(f"kb_chat:,mode {mode}")
start_time = time.time()
2024-12-20 16:04:03 +08:00
if mode == "local_kb":
kb = KBServiceFactory.get_service_by_name(kb_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {kb_name}")
async def knowledge_base_chat_iterator() -> AsyncIterable[str]:
try:
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode}")
start_time1 = time.time()
2024-12-20 16:04:03 +08:00
nonlocal history, prompt_name, max_tokens
history = [History.from_data(h) for h in history]
if mode == "local_kb":
kb = KBServiceFactory.get_service_by_name(kb_name)
ok, msg = kb.check_embed_model()
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode}kb_name{kb_name}")
2024-12-20 16:04:03 +08:00
if not ok:
raise ValueError(msg)
# docs = search_docs( query = query,knowledge_base_name = kb_name,top_k = top_k, score_threshold = score_threshold,)
2024-12-20 16:04:03 +08:00
docs = await run_in_threadpool(search_docs,
query=query,
knowledge_base_name=kb_name,
top_k=top_k,
score_threshold=score_threshold,
file_name="",
metadata={})
2024-12-20 16:04:03 +08:00
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
2025-02-24 10:18:26 +08:00
# logger.info(
# f"***********************************knowledge_base_chat_iterator:,after format_reference:{docs}")
end_time1 = time.time()
execution_time1 = end_time1 - start_time1
logger.info(f"kb_chat Execution time检索完成: {execution_time1:.6f} seconds")
2024-12-20 16:04:03 +08:00
elif mode == "temp_kb":
ok, msg = check_embed_model()
if not ok:
raise ValueError(msg)
docs = await run_in_threadpool(search_temp_docs,
kb_name,
query=query,
top_k=top_k,
score_threshold=score_threshold)
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
elif mode == "search_engine":
result = await run_in_threadpool(search_engine, query, top_k, kb_name)
docs = [x.dict() for x in result.get("docs", [])]
source_documents = [f"""出处 [{i + 1}] [{d['metadata']['filename']}]({d['metadata']['source']}) \n\n{d['page_content']}\n\n""" for i,d in enumerate(docs)]
else:
docs = []
source_documents = []
# import rich
# rich.print(dict(
# mode=mode,
# query=query,
# knowledge_base_name=kb_name,
# top_k=top_k,
# score_threshold=score_threshold,
# ))
# rich.print(docs)
if return_direct:
yield OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
model=None,
object="chat.completion",
content="",
role="assistant",
finish_reason="stop",
docs=source_documents,
) .model_dump_json()
return
callback = AsyncIteratorCallbackHandler()
callbacks = [callback]
# Enable langchain-chatchat to support langfuse
import os
langfuse_secret_key = os.environ.get('LANGFUSE_SECRET_KEY')
langfuse_public_key = os.environ.get('LANGFUSE_PUBLIC_KEY')
langfuse_host = os.environ.get('LANGFUSE_HOST')
if langfuse_secret_key and langfuse_public_key and langfuse_host :
from langfuse import Langfuse
from langfuse.callback import CallbackHandler
langfuse_handler = CallbackHandler()
callbacks.append(langfuse_handler)
if max_tokens in [None, 0]:
max_tokens = Settings.model_settings.MAX_TOKENS
start_time1 = time.time()
2024-12-20 16:04:03 +08:00
llm = get_ChatOpenAI(
model_name=model,
temperature=temperature,
max_tokens=max_tokens,
callbacks=callbacks,
)
# TODO 视情况使用 API
# # 加入reranker
# if Settings.kb_settings.USE_RERANKER:
# reranker_model_path = get_model_path(Settings.kb_settings.RERANKER_MODEL)
# reranker_model = LangchainReranker(top_n=top_k,
# device=embedding_device(),
# max_length=Settings.kb_settings.RERANKER_MAX_LENGTH,
# model_name_or_path=reranker_model_path
# )
# print("-------------before rerank-----------------")
# print(docs)
# docs = reranker_model.compress_documents(documents=docs,
# query=query)
# print("------------after rerank------------------")
# print(docs)
context = "\n\n".join([doc["page_content"] for doc in docs])
if len(docs) == 0: # 如果没有找到相关文档使用empty模板
prompt_name = "empty"
prompt_template = get_prompt_template("rag", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
chain = chat_prompt | llm
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.ainvoke({"context": context, "question": query}),
callback.done),
)
if len(source_documents) == 0: # 没有找到相关文档
source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>")
if stream:
# yield documents first
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion.chunk",
content="",
role="assistant",
model=model,
docs=source_documents,
)
yield ret.model_dump_json()
async for token in callback.aiter():
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion.chunk",
content=token,
role="assistant",
model=model,
)
yield ret.model_dump_json()
else:
answer = ""
async for token in callback.aiter():
answer += token
ret = OpenAIChatOutput(
id=f"chat{uuid.uuid4()}",
object="chat.completion",
content=answer,
role="assistant",
model=model,
)
yield ret.model_dump_json()
await task
except asyncio.exceptions.CancelledError:
logger.warning("streaming progress has been interrupted by user.")
return
except Exception as e:
logger.error(f"error in knowledge chat: {e}")
yield {"data": json.dumps({"error": str(e)})}
return
if stream:
eventSource = EventSourceResponse(knowledge_base_chat_iterator())
# 记录结束时间
end_time = time.time()
# 计算执行时间
execution_time = end_time - start_time
logger.info(f"final kb_chat Execution time: {execution_time:.6f} seconds")
return eventSource
2024-12-20 16:04:03 +08:00
else:
return await knowledge_base_chat_iterator().__anext__()