Compare commits
2 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
22c666b4bf | |
|
|
b78edb72a1 |
|
|
@ -1,40 +0,0 @@
|
||||||
*.csv
|
|
||||||
*.yaml
|
|
||||||
*.xlsx
|
|
||||||
*.pdf
|
|
||||||
*.txt
|
|
||||||
*.log
|
|
||||||
*.pyc
|
|
||||||
/chatchat_data.bak
|
|
||||||
/chatchat_data/data/knowledge_base/samples
|
|
||||||
/chatchat_data
|
|
||||||
.idea/inspectionProfiles/profiles_settings.xml
|
|
||||||
.idea/Langchain-Chatchat.iml
|
|
||||||
.idea/misc.xml
|
|
||||||
.idea/modules.xml
|
|
||||||
.idea/prettier.xml
|
|
||||||
.idea/vcs.xml
|
|
||||||
.idea/inspectionProfiles/profiles_settings.xml
|
|
||||||
.idea/Langchain-Chatchat.iml
|
|
||||||
.idea/modules.xml
|
|
||||||
.idea/prettier.xml
|
|
||||||
.idea/vcs.xml
|
|
||||||
/.idea
|
|
||||||
/test_tool
|
|
||||||
chatchat_data/tool_settings.yaml
|
|
||||||
chatchat_data/prompt_settings.yaml
|
|
||||||
chatchat_data/model_settings.yaml
|
|
||||||
chatchat_data/basic_settings.yaml
|
|
||||||
localconfig/data/knowledge_base/samples/content/分布式训练技术原理.md
|
|
||||||
localconfig/data/knowledge_base/samples/content/大模型应用技术原理.md
|
|
||||||
localconfig/data/knowledge_base/samples/content/大模型技术栈-实战与应用.md
|
|
||||||
localconfig/data/knowledge_base/samples/content/大模型技术栈-算法与原理.md
|
|
||||||
localconfig/data/knowledge_base/samples/content/大模型指令对齐训练原理.md
|
|
||||||
localconfig/data/knowledge_base/samples/content/大模型推理优化策略.md
|
|
||||||
localconfig/data/knowledge_base/samples/vector_store/bge-large-zh-v1.5/index.faiss
|
|
||||||
localconfig/data/knowledge_base/samples/vector_store/bge-large-zh-v1.5/index.pkl
|
|
||||||
localconfig/data/knowledge_base/info.db
|
|
||||||
chatchat_data/basic_settings.yaml
|
|
||||||
chatchat_data/model_settings.yaml
|
|
||||||
chatchat_data/prompt_settings.yaml
|
|
||||||
chatchat_data/tool_settings.yaml
|
|
||||||
|
|
@ -1,8 +0,0 @@
|
||||||
# 默认忽略的文件
|
|
||||||
/shelf/
|
|
||||||
/workspace.xml
|
|
||||||
# 基于编辑器的 HTTP 客户端请求
|
|
||||||
/httpRequests/
|
|
||||||
# Datasource local storage ignored files
|
|
||||||
/dataSources/
|
|
||||||
/dataSources.local.xml
|
|
||||||
|
|
@ -1,7 +0,0 @@
|
||||||
<component name="ProjectDictionaryState">
|
|
||||||
<dictionary name="Guan">
|
|
||||||
<words>
|
|
||||||
<w>aggrid</w>
|
|
||||||
</words>
|
|
||||||
</dictionary>
|
|
||||||
</component>
|
|
||||||
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
|
|
||||||
# 默认选用的 LLM 名称
|
# 默认选用的 LLM 名称
|
||||||
DEFAULT_LLM_MODEL: qwen2.5-instruct
|
DEFAULT_LLM_MODEL: qwen2-instruct
|
||||||
|
|
||||||
# 默认选用的 Embedding 名称
|
# 默认选用的 Embedding 名称
|
||||||
DEFAULT_EMBEDDING_MODEL: bge-large-zh-v1.5
|
DEFAULT_EMBEDDING_MODEL: bge-large-zh-v1.5
|
||||||
|
|
@ -112,78 +112,78 @@ LLM_MODEL_CONFIG:
|
||||||
MODEL_PLATFORMS:
|
MODEL_PLATFORMS:
|
||||||
- platform_name: xinference
|
- platform_name: xinference
|
||||||
platform_type: xinference
|
platform_type: xinference
|
||||||
api_base_url: http://192.168.0.21:9997/v1
|
api_base_url: http://127.0.0.1:9997/v1
|
||||||
api_key: EMPTY
|
api_key: EMPTY
|
||||||
api_proxy: ''
|
api_proxy: ''
|
||||||
api_concurrencies: 5
|
api_concurrencies: 5
|
||||||
auto_detect_model: true
|
auto_detect_model: true
|
||||||
llm_models: [qwen2.5-instruct]
|
llm_models: []
|
||||||
embed_models: [bge-large-zh-v1.5]
|
embed_models: []
|
||||||
|
text2image_models: []
|
||||||
|
image2text_models: []
|
||||||
|
rerank_models: [bge-reranker-large]
|
||||||
|
speech2text_models: []
|
||||||
|
text2speech_models: []
|
||||||
|
- platform_name: ollama
|
||||||
|
platform_type: ollama
|
||||||
|
api_base_url: http://127.0.0.1:11434/v1
|
||||||
|
api_key: EMPTY
|
||||||
|
api_proxy: ''
|
||||||
|
api_concurrencies: 5
|
||||||
|
auto_detect_model: false
|
||||||
|
llm_models:
|
||||||
|
- qwen:7b
|
||||||
|
- qwen2:7b
|
||||||
|
embed_models:
|
||||||
|
- quentinz/bge-large-zh-v1.5
|
||||||
|
text2image_models: []
|
||||||
|
image2text_models: []
|
||||||
|
rerank_models: []
|
||||||
|
speech2text_models: []
|
||||||
|
text2speech_models: []
|
||||||
|
- platform_name: oneapi
|
||||||
|
platform_type: oneapi
|
||||||
|
api_base_url: http://127.0.0.1:3000/v1
|
||||||
|
api_key: sk-
|
||||||
|
api_proxy: ''
|
||||||
|
api_concurrencies: 5
|
||||||
|
auto_detect_model: false
|
||||||
|
llm_models:
|
||||||
|
- chatglm_pro
|
||||||
|
- chatglm_turbo
|
||||||
|
- chatglm_std
|
||||||
|
- chatglm_lite
|
||||||
|
- qwen-turbo
|
||||||
|
- qwen-plus
|
||||||
|
- qwen-max
|
||||||
|
- qwen-max-longcontext
|
||||||
|
- ERNIE-Bot
|
||||||
|
- ERNIE-Bot-turbo
|
||||||
|
- ERNIE-Bot-4
|
||||||
|
- SparkDesk
|
||||||
|
embed_models:
|
||||||
|
- text-embedding-v1
|
||||||
|
- Embedding-V1
|
||||||
|
text2image_models: []
|
||||||
|
image2text_models: []
|
||||||
|
rerank_models: []
|
||||||
|
speech2text_models: []
|
||||||
|
text2speech_models: []
|
||||||
|
- platform_name: openai
|
||||||
|
platform_type: openai
|
||||||
|
api_base_url: https://api.openai.com/v1
|
||||||
|
api_key: sk-proj-
|
||||||
|
api_proxy: ''
|
||||||
|
api_concurrencies: 5
|
||||||
|
auto_detect_model: false
|
||||||
|
llm_models:
|
||||||
|
- gpt-4o
|
||||||
|
- gpt-3.5-turbo
|
||||||
|
embed_models:
|
||||||
|
- text-embedding-3-small
|
||||||
|
- text-embedding-3-large
|
||||||
text2image_models: []
|
text2image_models: []
|
||||||
image2text_models: []
|
image2text_models: []
|
||||||
rerank_models: []
|
rerank_models: []
|
||||||
speech2text_models: []
|
speech2text_models: []
|
||||||
text2speech_models: []
|
text2speech_models: []
|
||||||
# - platform_name: ollama
|
|
||||||
# platform_type: ollama
|
|
||||||
# api_base_url: http://127.0.0.1:11434/v1
|
|
||||||
# api_key: EMPTY
|
|
||||||
# api_proxy: ''
|
|
||||||
# api_concurrencies: 5
|
|
||||||
# auto_detect_model: false
|
|
||||||
# llm_models:
|
|
||||||
# - qwen:7b
|
|
||||||
# - qwen2:7b
|
|
||||||
# embed_models:
|
|
||||||
# - quentinz/bge-large-zh-v1.5
|
|
||||||
# text2image_models: []
|
|
||||||
# image2text_models: []
|
|
||||||
# rerank_models: []
|
|
||||||
# speech2text_models: []
|
|
||||||
# text2speech_models: []
|
|
||||||
# - platform_name: oneapi
|
|
||||||
# platform_type: oneapi
|
|
||||||
# api_base_url: http://127.0.0.1:3000/v1
|
|
||||||
# api_key: sk-
|
|
||||||
# api_proxy: ''
|
|
||||||
# api_concurrencies: 5
|
|
||||||
# auto_detect_model: false
|
|
||||||
# llm_models:
|
|
||||||
# - chatglm_pro
|
|
||||||
# - chatglm_turbo
|
|
||||||
# - chatglm_std
|
|
||||||
# - chatglm_lite
|
|
||||||
# - qwen-turbo
|
|
||||||
# - qwen-plus
|
|
||||||
# - qwen-max
|
|
||||||
# - qwen-max-longcontext
|
|
||||||
# - ERNIE-Bot
|
|
||||||
# - ERNIE-Bot-turbo
|
|
||||||
# - ERNIE-Bot-4
|
|
||||||
# - SparkDesk
|
|
||||||
# embed_models:
|
|
||||||
# - text-embedding-v1
|
|
||||||
# - Embedding-V1
|
|
||||||
# text2image_models: []
|
|
||||||
# image2text_models: []
|
|
||||||
# rerank_models: []
|
|
||||||
# speech2text_models: []
|
|
||||||
# text2speech_models: []
|
|
||||||
# - platform_name: openai
|
|
||||||
# platform_type: openai
|
|
||||||
# api_base_url: https://api.openai.com/v1
|
|
||||||
# api_key: sk-proj-
|
|
||||||
# api_proxy: ''
|
|
||||||
# api_concurrencies: 5
|
|
||||||
# auto_detect_model: false
|
|
||||||
# llm_models:
|
|
||||||
# - gpt-4o
|
|
||||||
# - gpt-3.5-turbo
|
|
||||||
# embed_models:
|
|
||||||
# - text-embedding-3-small
|
|
||||||
# - text-embedding-3-large
|
|
||||||
# text2image_models: []
|
|
||||||
# image2text_models: []
|
|
||||||
# rerank_models: []
|
|
||||||
# speech2text_models: []
|
|
||||||
# text2speech_models: []
|
|
||||||
|
|
|
||||||
|
|
@ -14,7 +14,7 @@ search_local_knowledgebase:
|
||||||
# 搜索引擎工具配置项。推荐自己部署 searx 搜索引擎,国内使用最方便。
|
# 搜索引擎工具配置项。推荐自己部署 searx 搜索引擎,国内使用最方便。
|
||||||
search_internet:
|
search_internet:
|
||||||
use: false
|
use: false
|
||||||
search_engine_name: zhipu_search
|
search_engine_name: searx
|
||||||
search_engine_config:
|
search_engine_config:
|
||||||
bing:
|
bing:
|
||||||
bing_search_url: https://api.bing.microsoft.com/v7.0/search
|
bing_search_url: https://api.bing.microsoft.com/v7.0/search
|
||||||
|
|
@ -30,14 +30,6 @@ search_internet:
|
||||||
engines: []
|
engines: []
|
||||||
categories: []
|
categories: []
|
||||||
language: zh-CN
|
language: zh-CN
|
||||||
tavily:
|
|
||||||
tavily_api_key: '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'
|
|
||||||
include_answer: true
|
|
||||||
search_depth: advanced
|
|
||||||
include_raw_content: True
|
|
||||||
max_results: 1
|
|
||||||
zhipu_search:
|
|
||||||
zhipu_api_key: 'e2bdc39618624fd782ebcd721185645c.pcvcrTPFT69Jda8B'
|
|
||||||
top_k: 5
|
top_k: 5
|
||||||
verbose: Origin
|
verbose: Origin
|
||||||
conclude_prompt: "<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。
|
conclude_prompt: "<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。
|
||||||
|
|
|
||||||
|
|
@ -13,6 +13,6 @@ print(f"cuDNN 版本: {cudnn_version}")
|
||||||
|
|
||||||
# 检查是否可以访问 CUDA
|
# 检查是否可以访问 CUDA
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
print("pip install sentence-transformers -i https://pypi.mirrors.ustc.edu.cn/simpleCUDA is available. GPU name:", torch.cuda.get_device_name(0))
|
print("CUDA is available. GPU name:", torch.cuda.get_device_name(0))
|
||||||
else:
|
else:
|
||||||
print("CUDA is not available. Please check your installation.")
|
print("CUDA is not available. Please check your installation.")
|
||||||
|
|
@ -0,0 +1,111 @@
|
||||||
|
你是一名意图识别专家,任务是根据用户输入提取意图并提取相关的参数信息。意图分为以下六类:
|
||||||
|
|
||||||
|
1.日计划数量
|
||||||
|
2.日计划作业内容
|
||||||
|
3.周计划数量
|
||||||
|
4.周计划作业内容
|
||||||
|
5.页面操作
|
||||||
|
6.其他
|
||||||
|
|
||||||
|
模版结构与提取要求
|
||||||
|
1. 意图 1 和 2:日计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.时间 (time):必须字段,缺失时提示用户输入时间。
|
||||||
|
b.工程名称 (project):去除 "工程" 后的内容。
|
||||||
|
c.公司名称 (company):去除 "公司" 后的内容。
|
||||||
|
d.项目(部)名称 (program):去除 "项目" 或 "项目部" 后的内容。
|
||||||
|
e.项目经理名称 (manager):去除 "项目经理" 后的内容。
|
||||||
|
f.班组名称 (class):去除 "班组" 后的内容。
|
||||||
|
g.风险等级 (risk):限定为 "一"、"二"、"三"、"四"、"五"、"六"。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
"intention": "日计划数量",
|
||||||
|
"time": "时间",
|
||||||
|
"program": "项目(部)名称",
|
||||||
|
"company": "公司名称",
|
||||||
|
"project": "工程名称",
|
||||||
|
"manager": "项目经理名称",
|
||||||
|
"class": "班组名称",
|
||||||
|
"risk": "风险等级"
|
||||||
|
}
|
||||||
|
3)未提取到的字段:不包含在结果中。
|
||||||
|
4)时间缺失时:提示用户输入特定时间。
|
||||||
|
5)风险等级无效时:提示用户提供有效风险等级("一" 到 "六")。
|
||||||
|
|
||||||
|
2. 意图 3 和 4:周计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.与日计划相同,增加施工状态 (status),限定为:"未开始","进行中"和"已结束"
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
"intention": "周计划数量",
|
||||||
|
"time": "时间",
|
||||||
|
"program": "项目(部)名称",
|
||||||
|
"company": "公司名称",
|
||||||
|
"project": "工程名称",
|
||||||
|
"manager": "项目经理名称",
|
||||||
|
"class": "班组名称",
|
||||||
|
"risk": "风险等级",
|
||||||
|
"status": "施工状态"
|
||||||
|
}
|
||||||
|
3)时间缺失时:提示用户输入特定时间。
|
||||||
|
4)风险等级无效或施工状态不匹配时:提示用户提供有效值。
|
||||||
|
|
||||||
|
3. 意图 5:页面操作
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
操作类型 (action):存储 "打开" 或 "切换"。若用户输入单一名词,默认为 "切换"。
|
||||||
|
模块名称 (module):去除 "页面"、"模块"、"菜单" 后的部分内容。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
"intention": "页面操作",
|
||||||
|
"action": "操作类型",
|
||||||
|
"module": "模块名称"
|
||||||
|
}
|
||||||
|
4. 意图 6:其他
|
||||||
|
1)提取参数不需要有任务要求。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
"intention": "其他",
|
||||||
|
"content": "用户输入的原始内容"
|
||||||
|
}
|
||||||
|
|
||||||
|
5.示例
|
||||||
|
1)示例 1:
|
||||||
|
用户输入'今天送变电一公司1号工程B项目5号班组有多少项二级风险作业计划',
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '日计划数量',
|
||||||
|
'time': '今天',
|
||||||
|
'company': '变电一',‘
|
||||||
|
'project': '1号',
|
||||||
|
'program': 'B',
|
||||||
|
'class': '5号,
|
||||||
|
'risk': '二'
|
||||||
|
}
|
||||||
|
2)示例 2:
|
||||||
|
本周1号项目部多少项一级风险作业计划正在施工
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
"intention": "周计划数量",
|
||||||
|
"time": "本周",
|
||||||
|
"program": "1号",
|
||||||
|
"risk": "一",
|
||||||
|
"status": "进行中"
|
||||||
|
}
|
||||||
|
|
||||||
|
3)示例 3:
|
||||||
|
用户输入:
|
||||||
|
切换到首页
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
"intention": "页面操作",
|
||||||
|
"action": "切换",
|
||||||
|
"module": "首页"
|
||||||
|
}
|
||||||
|
4)示例 4:
|
||||||
|
用户输入:
|
||||||
|
你好,请帮我查一下
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
"intention": "其他",
|
||||||
|
"content": "你好,请帮我查一下"
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,144 @@
|
||||||
|
你是一名意图识别专家,任务是根据用户输入提取意图并提取相关的参数信息,意图分为以下9类:
|
||||||
|
1.日计划数量 - 用户询问日计划的数量相关。
|
||||||
|
2.日计划作业内容 - 用户询问日计划的作业内容相关。
|
||||||
|
3.周计划数量 - 用户询问周计划的数量相关。
|
||||||
|
4.周计划作业内容 - 用户询问周计划的作业内容相关。
|
||||||
|
5.页面操作 - 用户希望打开或跳转具体页面。
|
||||||
|
6.联网查询 - 用户要求获取世界、历史、实时新闻、或除电力系统之外的信息。
|
||||||
|
7.天气查询 - 用户要求查某地方某时间的天气。
|
||||||
|
8.知识库查询 - 用户寻找特定的信息或知识,如国家电网各部门规章制度、安徽送变电规章制度等相关的问题,需要通过知识库来回答。
|
||||||
|
9.其他 - 无法匹配到以上的几个意图,要求用户根据补充问题。
|
||||||
|
|
||||||
|
模版结构与提取要求
|
||||||
|
1. 意图 1 和 2:日计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.时间 (time):必须字段,缺失时提示用户输入时间。
|
||||||
|
b.工程名称 (project):去除 '工程' 后的内容。
|
||||||
|
c.公司名称 (company):去除 '公司' 后的内容。
|
||||||
|
d.项目(部)名称 (program):去除 '项目' 或 '项目部' 后的内容。
|
||||||
|
e.项目经理名称 (manager):去除 '项目经理' 后的内容。
|
||||||
|
f.班组名称 (class):去除 '班组' 后的内容。
|
||||||
|
g.风险等级 (risk):限定为 '一'、'二'、'三'、'四'、'五'、'六'。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '日计划数量',
|
||||||
|
'time': '时间',
|
||||||
|
'program': '项目(部)名称',
|
||||||
|
'company': '公司名称',
|
||||||
|
'project': '工程名称',
|
||||||
|
'manager': '项目经理名称',
|
||||||
|
'class': '班组名称',
|
||||||
|
'risk': '风险等级'
|
||||||
|
}
|
||||||
|
3)未提取到的字段:不包含在结果中。
|
||||||
|
4)时间缺失时:提示用户输入特定时间。
|
||||||
|
5)风险等级无效时:提示用户提供有效风险等级('一' 到 '六')。
|
||||||
|
|
||||||
|
2. 意图 3 和 4:周计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.与日计划相同,增加施工状态 (status),限定为:'未开始','进行中'和'已结束'
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '周计划数量',
|
||||||
|
'time': '时间',
|
||||||
|
'program': '项目(部)名称',
|
||||||
|
'company': '公司名称',
|
||||||
|
'project': '工程名称',
|
||||||
|
'manager': '项目经理名称',
|
||||||
|
'class': '班组名称',
|
||||||
|
'risk': '风险等级',
|
||||||
|
'status': '施工状态'
|
||||||
|
}
|
||||||
|
3)时间缺失时:提示用户输入特定时间。
|
||||||
|
4)风险等级无效或施工状态不匹配时:提示用户提供有效值。
|
||||||
|
|
||||||
|
3. 意图 5:页面操作
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
操作类型 (action):存储 '打开' 或 '切换'。若用户输入单一名词,默认为 '切换'。
|
||||||
|
模块名称 (module):去除 '页面'、'模块'、'菜单' 后的部分内容。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '页面操作',
|
||||||
|
'action': '操作类型',
|
||||||
|
'module': '模块名称'
|
||||||
|
}
|
||||||
|
|
||||||
|
4.意图 6:联网查询
|
||||||
|
1)不需要提取任何参数。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '联网查询',
|
||||||
|
}
|
||||||
|
|
||||||
|
5. 意图7:天气查询
|
||||||
|
1)不需要提取任何参数。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '天气查询'
|
||||||
|
}
|
||||||
|
|
||||||
|
6.意图8:知识库查询
|
||||||
|
1)不需要提取任何参数。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '知识库查询',
|
||||||
|
}
|
||||||
|
|
||||||
|
7. 意图 9:其他
|
||||||
|
1)不需要提取任何参数。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '其他',
|
||||||
|
'content': '用户输入的原始内容'
|
||||||
|
}
|
||||||
|
|
||||||
|
5.示例
|
||||||
|
1)示例 1:
|
||||||
|
用户输入'今天送变电一公司1号工程B项目5号班组有多少项二级风险作业计划',
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '日计划数量',
|
||||||
|
'time': '今天',
|
||||||
|
'company': '变电一',‘
|
||||||
|
'project': '1号',
|
||||||
|
'program': 'B',
|
||||||
|
'class': '5号,
|
||||||
|
'risk': '二'
|
||||||
|
}
|
||||||
|
2)示例 2:
|
||||||
|
本周1号项目部多少项一级风险作业计划正在施工
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '周计划数量',
|
||||||
|
'time': '本周',
|
||||||
|
'program': '1号',
|
||||||
|
'risk': '一',
|
||||||
|
'status': '进行中'
|
||||||
|
}
|
||||||
|
|
||||||
|
3)示例 3:
|
||||||
|
用户输入:
|
||||||
|
切换到首页
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '页面操作',
|
||||||
|
'action': '切换',
|
||||||
|
'module': '首页'
|
||||||
|
}
|
||||||
|
|
||||||
|
4)示例 4:
|
||||||
|
用户输入:
|
||||||
|
本周合肥会有降雨吗?
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '天气查询'
|
||||||
|
}
|
||||||
|
|
||||||
|
5)示例 5:
|
||||||
|
用户输入:
|
||||||
|
你好,请帮我查一下
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '其他',
|
||||||
|
'content': '你好,请帮我查一下'
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,24 @@
|
||||||
|
你是一名意图识别专家,任务是根据用户输入提取意图。意图分为以下六类:
|
||||||
|
|
||||||
|
1.日计划数量
|
||||||
|
2.日计划作业内容
|
||||||
|
3.周计划数量
|
||||||
|
4.周计划作业内容
|
||||||
|
5.页面操作
|
||||||
|
6.联网查询
|
||||||
|
7.天气
|
||||||
|
8.知识库查询
|
||||||
|
|
||||||
|
|
||||||
|
你是一名意图识别专家,任务是根据下面提供的用户输入,确定其对应的意图类别。意图类别包括:
|
||||||
|
1. 日计划数量 - 用户询问日计划的数量相关。
|
||||||
|
2. 日计划作业内容 - 用户询问日计划的作业内容相关。
|
||||||
|
3. 周计划数量 - 用户询问周计划的数量相关。
|
||||||
|
4. 周计划作业内容 - 用户询问周计划的作业内容相关。
|
||||||
|
5. 页面操作 - 用户希望打开或跳转具体页面。
|
||||||
|
6. 联网查询或天气 - 用户要求获取世界、历史、实时新闻、天气或除电力系统之外的信息。
|
||||||
|
7. 知识库查询 - 用户寻找特定的信息或知识,如国家电网各部门规章制度、安徽送变电规章制度等相关的问题,需要通过知识库来回答。
|
||||||
|
|
||||||
|
规则:
|
||||||
|
- 对于每个输入,请明确指出它属于类别的序号1,2,3,4,,6,7,一定不要有其他多余描述。
|
||||||
|
- 尽可能从用户输入中确定以上类别中的一个,如果无法确定,请用户补充更多信息。
|
||||||
|
|
@ -0,0 +1,72 @@
|
||||||
|
你是一名意图识别专家,任务是根据用户输入提取意图并提取相关的参数信息,意图分为以下9类:
|
||||||
|
1.日计划数量 - 用户询问日计划的数量相关。
|
||||||
|
2.日计划作业内容 - 用户询问日计划的作业内容相关。
|
||||||
|
3.周计划数量 - 用户询问周计划的数量相关。
|
||||||
|
4.周计划作业内容 - 用户询问周计划的作业内容相关。
|
||||||
|
|
||||||
|
模版结构与提取要求
|
||||||
|
1. 意图 1 和 2:日计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.时间 (time):必须字段,缺失时提示用户输入时间。
|
||||||
|
b.工程名称 (project):去除 '工程' 后的内容。
|
||||||
|
c.公司名称 (company):去除 '公司' 后的内容。
|
||||||
|
d.项目(部)名称 (program):去除 '项目' 或 '项目部' 后的内容。
|
||||||
|
e.项目经理名称 (manager):去除 '项目经理' 后的内容。
|
||||||
|
f.班组名称 (class):去除 '班组' 后的内容。
|
||||||
|
g.风险等级 (risk):限定为 '一'、'二'、'三'、'四'、'五'、'六'。
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '日计划数量',
|
||||||
|
'time': '时间',
|
||||||
|
'program': '项目(部)名称',
|
||||||
|
'company': '公司名称',
|
||||||
|
'project': '工程名称',
|
||||||
|
'manager': '项目经理名称',
|
||||||
|
'class': '班组名称',
|
||||||
|
'risk': '风险等级'
|
||||||
|
}
|
||||||
|
3)未提取到的字段:不包含在结果中。
|
||||||
|
4)时间缺失时:提示用户输入特定时间。
|
||||||
|
5)风险等级无效时:提示用户提供有效风险等级('一' 到 '六')。
|
||||||
|
|
||||||
|
2. 意图 3 和 4:周计划相关
|
||||||
|
1)提取参数的要求如下:
|
||||||
|
a.与日计划相同,增加施工状态 (status),限定为:'未开始','进行中'和'已结束'
|
||||||
|
2)返回格式:
|
||||||
|
{
|
||||||
|
'intention': '周计划数量',
|
||||||
|
'time': '时间',
|
||||||
|
'program': '项目(部)名称',
|
||||||
|
'company': '公司名称',
|
||||||
|
'project': '工程名称',
|
||||||
|
'manager': '项目经理名称',
|
||||||
|
'class': '班组名称',
|
||||||
|
'risk': '风险等级',
|
||||||
|
'status': '施工状态'
|
||||||
|
}
|
||||||
|
3)时间缺失时:提示用户输入特定时间。
|
||||||
|
4)风险等级无效或施工状态不匹配时:提示用户提供有效值。
|
||||||
|
|
||||||
|
5.示例
|
||||||
|
1)示例 1:
|
||||||
|
用户输入'今天送变电一公司1号工程B项目5号班组有多少项二级风险作业计划',
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '日计划数量',
|
||||||
|
'time': '今天',
|
||||||
|
'company': '变电一',‘
|
||||||
|
'project': '1号',
|
||||||
|
'program': 'B',
|
||||||
|
'class': '5号,
|
||||||
|
'risk': '二'
|
||||||
|
}
|
||||||
|
2)示例 2:
|
||||||
|
本周1号项目部多少项一级风险作业计划正在施工
|
||||||
|
返回:
|
||||||
|
{
|
||||||
|
'intention': '周计划数量',
|
||||||
|
'time': '本周',
|
||||||
|
'program': '1号',
|
||||||
|
'risk': '一',
|
||||||
|
'status': '进行中'
|
||||||
|
}
|
||||||
|
|
@ -20,7 +20,7 @@ def amap_poi_search_engine(keywords: str,types: str,config: dict):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="高德地图POI搜索")
|
# @regist_tool(title="高德地图POI搜索")
|
||||||
def amap_poi_search(location: str = Field(description="'实际地名'或者'具体的地址',不能使用简称或者别称"),
|
def amap_poi_search(location: str = Field(description="'实际地名'或者'具体的地址',不能使用简称或者别称"),
|
||||||
types: str = Field(description="POI类型,比如商场、学校、医院等等")):
|
types: str = Field(description="POI类型,比如商场、学校、医院等等")):
|
||||||
""" A wrapper that uses Amap to search."""
|
""" A wrapper that uses Amap to search."""
|
||||||
|
|
|
||||||
|
|
@ -36,7 +36,7 @@ def get_weather(adcode: str, config: dict) -> dict:
|
||||||
else:
|
else:
|
||||||
return {"error": "API request failed"}
|
return {"error": "API request failed"}
|
||||||
|
|
||||||
#@regist_tool(title="高德地图天气查询")
|
# @regist_tool(title="高德地图天气查询")
|
||||||
def amap_weather(city: str = Field(description="城市名")):
|
def amap_weather(city: str = Field(description="城市名")):
|
||||||
"""A wrapper that uses Amap to get weather information."""
|
"""A wrapper that uses Amap to get weather information."""
|
||||||
tool_config = get_tool_config("amap")
|
tool_config = get_tool_config("amap")
|
||||||
|
|
|
||||||
|
|
@ -4,7 +4,7 @@ from chatchat.server.pydantic_v1 import Field
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="ARXIV论文")
|
# @regist_tool(title="ARXIV论文")
|
||||||
def arxiv(query: str = Field(description="The search query title")):
|
def arxiv(query: str = Field(description="The search query title")):
|
||||||
"""A wrapper around Arxiv.org for searching and retrieving scientific articles in various fields."""
|
"""A wrapper around Arxiv.org for searching and retrieving scientific articles in various fields."""
|
||||||
from langchain.tools.arxiv.tool import ArxivQueryRun
|
from langchain.tools.arxiv.tool import ArxivQueryRun
|
||||||
|
|
|
||||||
|
|
@ -3,7 +3,7 @@ from chatchat.server.pydantic_v1 import Field
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="数学计算器")
|
# @regist_tool(title="数学计算器")
|
||||||
def calculate(text: str = Field(description="a math expression")) -> float:
|
def calculate(text: str = Field(description="a math expression")) -> float:
|
||||||
"""
|
"""
|
||||||
Useful to answer questions about simple calculations.
|
Useful to answer questions about simple calculations.
|
||||||
|
|
|
||||||
|
|
@ -1,8 +1,5 @@
|
||||||
import json
|
|
||||||
import uuid
|
|
||||||
from typing import Dict, List
|
from typing import Dict, List
|
||||||
|
|
||||||
import requests
|
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
from langchain.utilities.bing_search import BingSearchAPIWrapper
|
from langchain.utilities.bing_search import BingSearchAPIWrapper
|
||||||
|
|
@ -10,21 +7,15 @@ from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
|
||||||
from langchain.utilities.searx_search import SearxSearchWrapper
|
from langchain.utilities.searx_search import SearxSearchWrapper
|
||||||
from markdownify import markdownify
|
from markdownify import markdownify
|
||||||
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
|
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
|
||||||
from langchain_community.tools.tavily_search import TavilySearchResults
|
|
||||||
import os
|
|
||||||
|
|
||||||
from chatchat.settings import Settings
|
from chatchat.settings import Settings
|
||||||
from chatchat.server.pydantic_v1 import Field
|
from chatchat.server.pydantic_v1 import Field
|
||||||
from chatchat.server.utils import get_tool_config
|
from chatchat.server.utils import get_tool_config
|
||||||
from chatchat.utils import build_logger
|
|
||||||
# from tavily import TavilyClient
|
|
||||||
|
|
||||||
from .tools_registry import BaseToolOutput, regist_tool, format_context
|
from .tools_registry import BaseToolOutput, regist_tool, format_context
|
||||||
|
|
||||||
logger = build_logger()
|
|
||||||
|
|
||||||
|
def searx_search(text ,config, top_k: int):
|
||||||
def searx_search(text, config, top_k: int):
|
|
||||||
print(f"searx_search: text: {text},config:{config},top_k:{top_k}")
|
print(f"searx_search: text: {text},config:{config},top_k:{top_k}")
|
||||||
search = SearxSearchWrapper(
|
search = SearxSearchWrapper(
|
||||||
searx_host=config["host"],
|
searx_host=config["host"],
|
||||||
|
|
@ -35,7 +26,7 @@ def searx_search(text, config, top_k: int):
|
||||||
return search.results(text, top_k)
|
return search.results(text, top_k)
|
||||||
|
|
||||||
|
|
||||||
def bing_search(text, config, top_k: int):
|
def bing_search(text, config, top_k:int):
|
||||||
search = BingSearchAPIWrapper(
|
search = BingSearchAPIWrapper(
|
||||||
bing_subscription_key=config["bing_key"],
|
bing_subscription_key=config["bing_key"],
|
||||||
bing_search_url=config["bing_search_url"],
|
bing_search_url=config["bing_search_url"],
|
||||||
|
|
@ -43,15 +34,15 @@ def bing_search(text, config, top_k: int):
|
||||||
return search.results(text, top_k)
|
return search.results(text, top_k)
|
||||||
|
|
||||||
|
|
||||||
def duckduckgo_search(text, config, top_k: int):
|
def duckduckgo_search(text, config, top_k:int):
|
||||||
search = DuckDuckGoSearchAPIWrapper()
|
search = DuckDuckGoSearchAPIWrapper()
|
||||||
return search.results(text, top_k)
|
return search.results(text, top_k)
|
||||||
|
|
||||||
|
|
||||||
def metaphor_search(
|
def metaphor_search(
|
||||||
text: str,
|
text: str,
|
||||||
config: dict,
|
config: dict,
|
||||||
top_k: int
|
top_k:int
|
||||||
) -> List[Dict]:
|
) -> List[Dict]:
|
||||||
from metaphor_python import Metaphor
|
from metaphor_python import Metaphor
|
||||||
|
|
||||||
|
|
@ -94,77 +85,21 @@ def metaphor_search(
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
|
|
||||||
def tavily_search(text, config, top_k):
|
|
||||||
# 配置tavily api key
|
|
||||||
os.environ["TAVILY_API_KEY"] = config["tavily_api_key"]
|
|
||||||
# 初始化工具(配置参数)
|
|
||||||
tavily_tool = TavilySearchResults(
|
|
||||||
include_answer=config["include_answer"], # 关键参数:启用答案生成
|
|
||||||
search_depth=config["search_depth"], # 必须使用高级搜索模式
|
|
||||||
include_raw_content=config["include_raw_content"],
|
|
||||||
max_results=config["max_results"]
|
|
||||||
)
|
|
||||||
|
|
||||||
# 直接执行搜索
|
|
||||||
raw_results = tavily_tool.run(text)
|
|
||||||
search_results = [{k: v for k, v in item.items() if k != 'url'} for item in raw_results]
|
|
||||||
|
|
||||||
# print("=== 完整搜索返回值 ===")
|
|
||||||
# print(search_results)
|
|
||||||
return search_results
|
|
||||||
|
|
||||||
|
|
||||||
def zhipu_search(text, config, top_k):
|
|
||||||
api_key = config["zhipu_api_key"]
|
|
||||||
endpoint = "https://open.bigmodel.cn/api/paas/v4/web_search"
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {api_key}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
payload = {
|
|
||||||
"search_engine": "Search-Pro", # 指定Web搜索专用模型
|
|
||||||
"search_query": text
|
|
||||||
}
|
|
||||||
response = requests.post(endpoint, headers=headers, json=payload)
|
|
||||||
result = response.json()
|
|
||||||
print(f"================!! result: {result}")
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
SEARCH_ENGINES = {
|
SEARCH_ENGINES = {
|
||||||
"bing": bing_search,
|
"bing": bing_search,
|
||||||
"duckduckgo": duckduckgo_search,
|
"duckduckgo": duckduckgo_search,
|
||||||
"metaphor": metaphor_search,
|
"metaphor": metaphor_search,
|
||||||
"searx": searx_search,
|
"searx": searx_search,
|
||||||
"tavily": tavily_search,
|
|
||||||
"zhipu_search": zhipu_search
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def search_result2docs(search_results, engine_name, top_k) -> List[Document]:
|
def search_result2docs(search_results) -> List[Document]:
|
||||||
docs = []
|
docs = []
|
||||||
if engine_name == "zhipu_search":
|
|
||||||
try:
|
|
||||||
# search_results_json = json.loads(search_results)
|
|
||||||
results = search_results["search_result"]
|
|
||||||
except (KeyError, IndexError) as e:
|
|
||||||
print(f"结构异常: {e}")
|
|
||||||
results = []
|
|
||||||
# 遍历并处理每个结果
|
|
||||||
for item in results[:top_k]:
|
|
||||||
doc = Document(
|
|
||||||
page_content=item['content'],
|
|
||||||
metadata={"link": item['link'], "title": item['title']}
|
|
||||||
)
|
|
||||||
docs.append(doc)
|
|
||||||
return docs
|
|
||||||
page_contents_key = "snippet" if engine_name != "tavily" else "content"
|
|
||||||
metadata_key = "link" if engine_name != "tavily" else "url"
|
|
||||||
for result in search_results:
|
for result in search_results:
|
||||||
doc = Document(
|
doc = Document(
|
||||||
page_content=result[page_contents_key] if page_contents_key in result.keys() else "",
|
page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||||||
metadata={
|
metadata={
|
||||||
"source": result[metadata_key] if metadata_key in result.keys() else "",
|
"source": result["link"] if "link" in result.keys() else "",
|
||||||
"filename": result["title"] if "title" in result.keys() else "",
|
"filename": result["title"] if "title" in result.keys() else "",
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
@ -172,7 +107,7 @@ def search_result2docs(search_results, engine_name, top_k) -> List[Document]:
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
|
|
||||||
def search_engine(query: str, top_k: int = 0, engine_name: str = "", config: dict = {}):
|
def search_engine(query: str, top_k:int=0, engine_name: str="", config: dict={}):
|
||||||
config = config or get_tool_config("search_internet")
|
config = config or get_tool_config("search_internet")
|
||||||
if top_k <= 0:
|
if top_k <= 0:
|
||||||
top_k = config.get("top_k", Settings.kb_settings.SEARCH_ENGINE_TOP_K)
|
top_k = config.get("top_k", Settings.kb_settings.SEARCH_ENGINE_TOP_K)
|
||||||
|
|
@ -182,20 +117,12 @@ def search_engine(query: str, top_k: int = 0, engine_name: str = "", config: dic
|
||||||
results = search_engine_use(
|
results = search_engine_use(
|
||||||
text=query, config=config["search_engine_config"][engine_name], top_k=top_k
|
text=query, config=config["search_engine_config"][engine_name], top_k=top_k
|
||||||
)
|
)
|
||||||
|
docs = [x for x in search_result2docs(results) if x.page_content and x.page_content.strip()]
|
||||||
docs = [x for x in search_result2docs(results, engine_name, top_k) if x.page_content and x.page_content.strip()]
|
|
||||||
print(f"len(docs): {len(docs)}")
|
|
||||||
# print(f"docs:{docs}")
|
|
||||||
# # print(f"docs: {docs[:150]}")
|
|
||||||
return {"docs": docs, "search_engine": engine_name}
|
return {"docs": docs, "search_engine": engine_name}
|
||||||
|
|
||||||
|
|
||||||
@regist_tool(title="互联网搜索")
|
@regist_tool(title="互联网搜索")
|
||||||
def search_internet(query: str = Field(description="query for Internet search")):
|
def search_internet(query: str = Field(description="query for Internet search")):
|
||||||
"""用这个工具实现获取世界、历史、实时新闻、或除电力系统之外的信息查询"""
|
"""用这个工具实现获取世界、历史、实时新闻、或除电力系统之外的信息查询"""
|
||||||
try:
|
print(f"search_internet: query: {query}")
|
||||||
print(f"search_internet: query: {query}")
|
return BaseToolOutput(search_engine(query=query), format=format_context)
|
||||||
return BaseToolOutput(data=search_engine(query=query), format=format_context)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"未知错误: {str(e)}")
|
|
||||||
return BaseToolOutput(f"搜索过程中发生未知错误,{str(e)}", format=format_context)
|
|
||||||
|
|
|
||||||
|
|
@ -3,7 +3,7 @@ from chatchat.server.pydantic_v1 import Field
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="油管视频")
|
# @regist_tool(title="油管视频")
|
||||||
def search_youtube(query: str = Field(description="Query for Videos search")):
|
def search_youtube(query: str = Field(description="Query for Videos search")):
|
||||||
"""use this tools_factory to search youtube videos"""
|
"""use this tools_factory to search youtube videos"""
|
||||||
from langchain_community.tools import YouTubeSearchTool
|
from langchain_community.tools import YouTubeSearchTool
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@ from chatchat.server.pydantic_v1 import Field
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="系统命令")
|
# @regist_tool(title="系统命令")
|
||||||
def shell(query: str = Field(description="The command to execute")):
|
def shell(query: str = Field(description="The command to execute")):
|
||||||
"""Use Shell to execute system shell commands"""
|
"""Use Shell to execute system shell commands"""
|
||||||
tool = ShellTool()
|
tool = ShellTool()
|
||||||
|
|
|
||||||
|
|
@ -14,7 +14,7 @@ from chatchat.server.utils import MsgType, get_tool_config, get_model_info
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="文生图", return_direct=True)
|
# @regist_tool(title="文生图", return_direct=True)
|
||||||
def text2images(
|
def text2images(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
n: int = Field(1, description="需生成图片的数量"),
|
n: int = Field(1, description="需生成图片的数量"),
|
||||||
|
|
|
||||||
|
|
@ -108,7 +108,7 @@ def query_prometheus(query: str, config: dict) -> str:
|
||||||
return content
|
return content
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="Prometheus对话")
|
# @regist_tool(title="Prometheus对话")
|
||||||
def text2promql(
|
def text2promql(
|
||||||
query: str = Field(
|
query: str = Field(
|
||||||
description="Tool for querying a Prometheus server, No need for PromQL statements, "
|
description="Tool for querying a Prometheus server, No need for PromQL statements, "
|
||||||
|
|
|
||||||
|
|
@ -129,7 +129,7 @@ def query_database(query: str, config: dict):
|
||||||
return context
|
return context
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="数据库对话")
|
# @regist_tool(title="数据库对话")
|
||||||
def text2sql(
|
def text2sql(
|
||||||
query: str = Field(
|
query: str = Field(
|
||||||
description="No need for SQL statements,just input the natural language that you want to chat with database"
|
description="No need for SQL statements,just input the natural language that you want to chat with database"
|
||||||
|
|
|
||||||
|
|
@ -176,7 +176,7 @@ def format_context(self: BaseToolOutput) -> str:
|
||||||
doc = DocumentWithVSId.parse_obj(doc)
|
doc = DocumentWithVSId.parse_obj(doc)
|
||||||
source_documents.append(doc.page_content)
|
source_documents.append(doc.page_content)
|
||||||
|
|
||||||
# print(f"format_context: doc.page_content: {doc.page_content}")
|
print(f"format_context: doc.page_content: {doc.page_content}")
|
||||||
if len(source_documents) == 0:
|
if len(source_documents) == 0:
|
||||||
context = "没有找到相关文档,请更换关键词重试"
|
context = "没有找到相关文档,请更换关键词重试"
|
||||||
else:
|
else:
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ from chatchat.server.agent.tools_factory.tools_registry import format_context
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="URL内容阅读")
|
# @regist_tool(title="URL内容阅读")
|
||||||
def url_reader(
|
def url_reader(
|
||||||
url: str = Field(
|
url: str = Field(
|
||||||
description="The URL to be processed, so that its web content can be made more clear to read. Then provide a detailed description of the content in about 500 words. As structured as possible. ONLY THE LINK SHOULD BE PASSED IN."),
|
description="The URL to be processed, so that its web content can be made more clear to read. Then provide a detailed description of the content in about 500 words. As structured as possible. ONLY THE LINK SHOULD BE PASSED IN."),
|
||||||
|
|
|
||||||
|
|
@ -12,132 +12,26 @@ from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
@regist_tool(title="天气查询")
|
@regist_tool(title="天气查询")
|
||||||
def weather_check(
|
def weather_check(
|
||||||
city: str = Field(description="城市名称,包括市和县,例如 '厦门'"),
|
city: str = Field(description="City name,include city and county,like '厦门'"),
|
||||||
date: str = Field(
|
|
||||||
default=None,
|
|
||||||
description="日期参数,支持以下格式:\n"
|
|
||||||
"- '今天':获取当前实时天气\n"
|
|
||||||
"- '明天'/'后天':获取未来24/48小时预报\n"
|
|
||||||
"- '未来X天':获取最多X天预报(如'未来3天'),X的抽取要符合客户意图\n"
|
|
||||||
"- 不支持其他参数,如果是其他参数,则时间参数为None\n"
|
|
||||||
)
|
|
||||||
):
|
):
|
||||||
"""用这个工具获取指定地点和指定时间的天气"""
|
"""用这个工具获取指定地点和指定时间的天气"""
|
||||||
|
# """Use this tool to check the weather at a specific city"""
|
||||||
|
|
||||||
# 参数校验
|
print(f"weather_check tool内部调用,city{city}")
|
||||||
missing_params = []
|
|
||||||
if not city:
|
|
||||||
missing_params.append("城市名称")
|
|
||||||
if not date:
|
|
||||||
missing_params.append("日期参数")
|
|
||||||
|
|
||||||
if missing_params:
|
|
||||||
return BaseToolOutput(data={"error_message": f"缺少必要参数:{', '.join(missing_params)},请补充完整查询信息"},
|
|
||||||
require_additional_input=True
|
|
||||||
)
|
|
||||||
|
|
||||||
print(f"city:{city}, date:{date}")
|
|
||||||
try:
|
|
||||||
weather_type, number = parse_date_parameter(date)
|
|
||||||
except ValueError as e:
|
|
||||||
logging.error(f"日期参数解析失败: {str(e)}")
|
|
||||||
return BaseToolOutput(data={"error_message": str(e)})
|
|
||||||
|
|
||||||
# 获取API配置
|
|
||||||
tool_config = get_tool_config("weather_check")
|
tool_config = get_tool_config("weather_check")
|
||||||
api_key = tool_config.get("api_key")
|
api_key = tool_config.get("api_key")
|
||||||
if not api_key:
|
|
||||||
return BaseToolOutput(data={"error_message": "API密钥未配置,请联系管理员"})
|
|
||||||
|
|
||||||
# 根据天气类型调用API
|
|
||||||
if weather_type == "daily":
|
|
||||||
return _get_current_weather(city, api_key)
|
|
||||||
elif weather_type == "future":
|
|
||||||
return _get_future_weather(city, api_key, number)
|
|
||||||
else:
|
|
||||||
return BaseToolOutput(data={"error_message": "不支持的天气类型"})
|
|
||||||
|
|
||||||
|
|
||||||
def _get_current_weather(city: str, api_key: str) -> BaseToolOutput:
|
|
||||||
"""获取当前实时天气"""
|
|
||||||
url = f"http://api.seniverse.com/v3/weather/now.json?key={api_key}&location={city}&language=zh-Hans&unit=c"
|
url = f"http://api.seniverse.com/v3/weather/now.json?key={api_key}&location={city}&language=zh-Hans&unit=c"
|
||||||
logging.info(f"请求URL: {url}")
|
logging.info(f"url:{url}")
|
||||||
response = requests.get(url)
|
response = requests.get(url)
|
||||||
|
if response.status_code == 200:
|
||||||
if response.status_code != 200:
|
data = response.json()
|
||||||
logging.error(f"天气查询失败: {response.status_code}")
|
logging.info(f"response.json():{data}")
|
||||||
return BaseToolOutput(data={"error_message": "天气查询API请求失败"})
|
|
||||||
|
|
||||||
data = response.json()
|
|
||||||
weather = {
|
|
||||||
"temperature": data["results"][0]["now"]["temperature"],
|
|
||||||
"description": data["results"][0]["now"]["text"],
|
|
||||||
}
|
|
||||||
return BaseToolOutput(data=weather)
|
|
||||||
|
|
||||||
|
|
||||||
def _get_future_weather(city: str, api_key: str, days: int) -> BaseToolOutput:
|
|
||||||
"""获取未来天气预报"""
|
|
||||||
url = f"http://api.seniverse.com/v3/weather/daily.json?key={api_key}&location={city}&language=zh-Hans&unit=c"
|
|
||||||
logging.info(f"请求URL: {url}")
|
|
||||||
response = requests.get(url)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
logging.error(f"天气查询失败: {response.status_code}")
|
|
||||||
return BaseToolOutput("天气查询API请求失败")
|
|
||||||
|
|
||||||
data = response.json()
|
|
||||||
daily_data = data["results"][0]["daily"]
|
|
||||||
|
|
||||||
if days == 1:
|
|
||||||
weather = {
|
weather = {
|
||||||
"date": "明天",
|
"temperature": data["results"][0]["now"]["temperature"],
|
||||||
"low_temperature": daily_data[1]["low"],
|
"description": data["results"][0]["now"]["text"],
|
||||||
"high_temperature": daily_data[1]["high"],
|
|
||||||
"description": daily_data[1]["text_day"],
|
|
||||||
}
|
|
||||||
elif days == 2:
|
|
||||||
weather = {
|
|
||||||
"date": "后天",
|
|
||||||
"low_temperature": daily_data[2]["low"],
|
|
||||||
"high_temperature": daily_data[2]["high"],
|
|
||||||
"description": daily_data[2]["text_day"],
|
|
||||||
}
|
|
||||||
elif days == 3:
|
|
||||||
weather = {
|
|
||||||
"今天天气": daily_data[0]["text_day"],
|
|
||||||
"今天最低温度": daily_data[0]["low"],
|
|
||||||
"今天最高温度": daily_data[0]["high"],
|
|
||||||
"明天天气": daily_data[1]["text_day"],
|
|
||||||
"明天最低温度": daily_data[1]["low"],
|
|
||||||
"明天最高温度": daily_data[1]["high"],
|
|
||||||
"后天天气": daily_data[2]["text_day"],
|
|
||||||
"后天最低温度": daily_data[2]["low"],
|
|
||||||
"后天最高温度": daily_data[2]["high"],
|
|
||||||
}
|
}
|
||||||
|
return BaseToolOutput(weather)
|
||||||
else:
|
else:
|
||||||
return BaseToolOutput(data={"error_message": "不支持的天数参数"})
|
logging.error(f"Failed to retrieve weather: {response.status_code}")
|
||||||
|
raise Exception(f"Failed to retrieve weather: {response.status_code}")
|
||||||
|
|
||||||
return BaseToolOutput(data=weather)
|
|
||||||
|
|
||||||
|
|
||||||
def parse_date_parameter(date: str) -> tuple:
|
|
||||||
"""解析日期参数,返回天气类型和天数"""
|
|
||||||
if date == "今天":
|
|
||||||
return "daily", 1
|
|
||||||
elif date == "明天":
|
|
||||||
return "future", 1
|
|
||||||
elif date == "后天":
|
|
||||||
return "future", 2
|
|
||||||
elif date.startswith("未来") and date.endswith("天"):
|
|
||||||
days = int(date[2:-1])
|
|
||||||
if 1 <= days <= 3:
|
|
||||||
return "future", days
|
|
||||||
else:
|
|
||||||
raise ValueError("未来预报仅支持1-3天")
|
|
||||||
else:
|
|
||||||
raise ValueError("不支持的日期参数")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
weather_check("合肥", "明天")
|
|
||||||
|
|
|
||||||
|
|
@ -8,7 +8,7 @@ from chatchat.server.pydantic_v1 import Field
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool(title="维基百科搜索")
|
# @regist_tool(title="维基百科搜索")
|
||||||
def wikipedia_search(query: str = Field(description="The search query")):
|
def wikipedia_search(query: str = Field(description="The search query")):
|
||||||
""" A wrapper that uses Wikipedia to search."""
|
""" A wrapper that uses Wikipedia to search."""
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@ from chatchat.server.utils import get_tool_config
|
||||||
from .tools_registry import BaseToolOutput, regist_tool
|
from .tools_registry import BaseToolOutput, regist_tool
|
||||||
|
|
||||||
|
|
||||||
#@regist_tool
|
# @regist_tool
|
||||||
def wolfram(query: str = Field(description="The formula to be calculated")):
|
def wolfram(query: str = Field(description="The formula to be calculated")):
|
||||||
"""Useful for when you need to calculate difficult formulas"""
|
"""Useful for when you need to calculate difficult formulas"""
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -65,7 +65,7 @@ async def chat_completions(
|
||||||
# import rich
|
# import rich
|
||||||
# rich.print(body)
|
# rich.print(body)
|
||||||
# 当调用本接口且 body 中没有传入 "max_tokens" 参数时, 默认使用配置中定义的值
|
# 当调用本接口且 body 中没有传入 "max_tokens" 参数时, 默认使用配置中定义的值
|
||||||
# logger.info(f"body.model_config:{body.model_config},body.tools: {body.tools},body.messages:{body.messages}")
|
logger.info(f"body.model_config:{body.model_config},body.tools: {body.tools},body.messages:{body.messages}")
|
||||||
if body.max_tokens in [None, 0]:
|
if body.max_tokens in [None, 0]:
|
||||||
body.max_tokens = Settings.model_settings.MAX_TOKENS
|
body.max_tokens = Settings.model_settings.MAX_TOKENS
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ from chatchat.server.utils import (wrap_done, get_ChatOpenAI, get_default_llm,
|
||||||
BaseResponse, get_prompt_template, build_logger,
|
BaseResponse, get_prompt_template, build_logger,
|
||||||
check_embed_model, api_address
|
check_embed_model, api_address
|
||||||
)
|
)
|
||||||
import time
|
|
||||||
|
|
||||||
logger = build_logger()
|
logger = build_logger()
|
||||||
|
|
||||||
|
|
@ -60,8 +60,6 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
return_direct: bool = Body(False, description="直接返回检索结果,不送入 LLM"),
|
return_direct: bool = Body(False, description="直接返回检索结果,不送入 LLM"),
|
||||||
request: Request = None,
|
request: Request = None,
|
||||||
):
|
):
|
||||||
logger.info(f"kb_chat:,mode {mode}")
|
|
||||||
start_time = time.time()
|
|
||||||
if mode == "local_kb":
|
if mode == "local_kb":
|
||||||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||||||
if kb is None:
|
if kb is None:
|
||||||
|
|
@ -69,8 +67,6 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
|
|
||||||
async def knowledge_base_chat_iterator() -> AsyncIterable[str]:
|
async def knowledge_base_chat_iterator() -> AsyncIterable[str]:
|
||||||
try:
|
try:
|
||||||
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode}")
|
|
||||||
start_time1 = time.time()
|
|
||||||
nonlocal history, prompt_name, max_tokens
|
nonlocal history, prompt_name, max_tokens
|
||||||
|
|
||||||
history = [History.from_data(h) for h in history]
|
history = [History.from_data(h) for h in history]
|
||||||
|
|
@ -78,10 +74,8 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
if mode == "local_kb":
|
if mode == "local_kb":
|
||||||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||||||
ok, msg = kb.check_embed_model()
|
ok, msg = kb.check_embed_model()
|
||||||
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode},kb_name:{kb_name}")
|
|
||||||
if not ok:
|
if not ok:
|
||||||
raise ValueError(msg)
|
raise ValueError(msg)
|
||||||
# docs = search_docs( query = query,knowledge_base_name = kb_name,top_k = top_k, score_threshold = score_threshold,)
|
|
||||||
docs = await run_in_threadpool(search_docs,
|
docs = await run_in_threadpool(search_docs,
|
||||||
query=query,
|
query=query,
|
||||||
knowledge_base_name=kb_name,
|
knowledge_base_name=kb_name,
|
||||||
|
|
@ -89,13 +83,7 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
score_threshold=score_threshold,
|
score_threshold=score_threshold,
|
||||||
file_name="",
|
file_name="",
|
||||||
metadata={})
|
metadata={})
|
||||||
|
|
||||||
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
|
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
|
||||||
# logger.info(
|
|
||||||
# f"***********************************knowledge_base_chat_iterator:,after format_reference:{docs}")
|
|
||||||
end_time1 = time.time()
|
|
||||||
execution_time1 = end_time1 - start_time1
|
|
||||||
logger.info(f"kb_chat Execution time检索完成: {execution_time1:.6f} seconds")
|
|
||||||
elif mode == "temp_kb":
|
elif mode == "temp_kb":
|
||||||
ok, msg = check_embed_model()
|
ok, msg = check_embed_model()
|
||||||
if not ok:
|
if not ok:
|
||||||
|
|
@ -151,7 +139,6 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
if max_tokens in [None, 0]:
|
if max_tokens in [None, 0]:
|
||||||
max_tokens = Settings.model_settings.MAX_TOKENS
|
max_tokens = Settings.model_settings.MAX_TOKENS
|
||||||
|
|
||||||
start_time1 = time.time()
|
|
||||||
llm = get_ChatOpenAI(
|
llm = get_ChatOpenAI(
|
||||||
model_name=model,
|
model_name=model,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
|
|
@ -236,12 +223,6 @@ async def kb_chat(query: str = Body(..., description="用户输入", examples=["
|
||||||
return
|
return
|
||||||
|
|
||||||
if stream:
|
if stream:
|
||||||
eventSource = EventSourceResponse(knowledge_base_chat_iterator())
|
return EventSourceResponse(knowledge_base_chat_iterator())
|
||||||
# 记录结束时间
|
|
||||||
end_time = time.time()
|
|
||||||
# 计算执行时间
|
|
||||||
execution_time = end_time - start_time
|
|
||||||
logger.info(f"final kb_chat Execution time: {execution_time:.6f} seconds")
|
|
||||||
return eventSource
|
|
||||||
else:
|
else:
|
||||||
return await knowledge_base_chat_iterator().__anext__()
|
return await knowledge_base_chat_iterator().__anext__()
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,6 @@ from chatchat.server.utils import (
|
||||||
get_default_embedding,
|
get_default_embedding,
|
||||||
)
|
)
|
||||||
from chatchat.utils import build_logger
|
from chatchat.utils import build_logger
|
||||||
from typing import List, Dict,Tuple
|
|
||||||
|
|
||||||
logger = build_logger()
|
logger = build_logger()
|
||||||
|
|
||||||
|
|
@ -72,15 +71,8 @@ def search_docs(
|
||||||
if kb is not None:
|
if kb is not None:
|
||||||
if query:
|
if query:
|
||||||
docs = kb.search_docs(query, top_k, score_threshold)
|
docs = kb.search_docs(query, top_k, score_threshold)
|
||||||
if docs is not None:
|
logger.info(f"search_docs, query:{query},top_k:{top_k},score_threshold:{score_threshold}")
|
||||||
logger.info(f"search_docs, query:{query},top_k:{top_k},score_threshold:{score_threshold},len(docs):{len(docs)}")
|
# data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs]
|
||||||
|
|
||||||
docs_key = kb.search_content_internal(query,2)
|
|
||||||
if docs_key is not None:
|
|
||||||
logger.info(f"before merge_and_deduplicate ,len(docs_key):{len(docs_key)}")
|
|
||||||
docs = merge_and_deduplicate(docs, docs_key)
|
|
||||||
if docs is not None:
|
|
||||||
logger.info(f"after merge_and_deduplicate len(docs):{len(docs)}")
|
|
||||||
data = [DocumentWithVSId(**{"id": x.metadata.get("id"), **x.dict()}) for x in docs]
|
data = [DocumentWithVSId(**{"id": x.metadata.get("id"), **x.dict()}) for x in docs]
|
||||||
elif file_name or metadata:
|
elif file_name or metadata:
|
||||||
data = kb.list_docs(file_name=file_name, metadata=metadata)
|
data = kb.list_docs(file_name=file_name, metadata=metadata)
|
||||||
|
|
@ -89,20 +81,6 @@ def search_docs(
|
||||||
del d.metadata["vector"]
|
del d.metadata["vector"]
|
||||||
return [x.dict() for x in data]
|
return [x.dict() for x in data]
|
||||||
|
|
||||||
def merge_and_deduplicate(list1: List[Document], list2: List[Document]) -> List[Document]:
|
|
||||||
# 使用字典存储唯一的 Document
|
|
||||||
merged_dict = {}
|
|
||||||
if list1 is not None:
|
|
||||||
merged_dict = {doc.page_content: doc for doc in list1}
|
|
||||||
|
|
||||||
# 遍历 list2,将新的 Document 添加到字典
|
|
||||||
if list2 is not None:
|
|
||||||
for doc in list2:
|
|
||||||
if doc.page_content not in merged_dict:
|
|
||||||
merged_dict[doc.page_content] = doc
|
|
||||||
|
|
||||||
# 返回去重后的列表
|
|
||||||
return list(merged_dict.values())
|
|
||||||
|
|
||||||
def list_files(knowledge_base_name: str) -> ListResponse:
|
def list_files(knowledge_base_name: str) -> ListResponse:
|
||||||
if not validate_kb_name(knowledge_base_name):
|
if not validate_kb_name(knowledge_base_name):
|
||||||
|
|
|
||||||
|
|
@ -210,12 +210,6 @@ class KBService(ABC):
|
||||||
docs = self.do_search(query, top_k, score_threshold)
|
docs = self.do_search(query, top_k, score_threshold)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def search_content_internal(self,
|
|
||||||
query: str,
|
|
||||||
top_k: int,
|
|
||||||
)->List[Document]:
|
|
||||||
docs = self.searchbyContentInternal(query,top_k)
|
|
||||||
return docs
|
|
||||||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
|
@ -325,16 +319,6 @@ class KBService(ABC):
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def searchbyContentInternal(self,
|
|
||||||
query: str,
|
|
||||||
top_k: int,
|
|
||||||
)->List[Tuple[Document, float]]:
|
|
||||||
"""
|
|
||||||
搜索知识库子类实自己逻辑
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def do_add_doc(
|
def do_add_doc(
|
||||||
self,
|
self,
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ from chatchat.server.knowledge_base.kb_service.base import KBService, SupportedV
|
||||||
from chatchat.server.knowledge_base.utils import KnowledgeFile
|
from chatchat.server.knowledge_base.utils import KnowledgeFile
|
||||||
from chatchat.server.utils import get_Embeddings
|
from chatchat.server.utils import get_Embeddings
|
||||||
from chatchat.utils import build_logger
|
from chatchat.utils import build_logger
|
||||||
from chatchat.server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
|
||||||
|
|
||||||
logger = build_logger()
|
logger = build_logger()
|
||||||
|
|
||||||
|
|
@ -37,12 +37,9 @@ class ESKBService(KBService):
|
||||||
self.client_cert = kb_config.get("client_cert", None)
|
self.client_cert = kb_config.get("client_cert", None)
|
||||||
self.dims_length = kb_config.get("dims_length", None)
|
self.dims_length = kb_config.get("dims_length", None)
|
||||||
self.embeddings_model = get_Embeddings(self.embed_model)
|
self.embeddings_model = get_Embeddings(self.embed_model)
|
||||||
logger.info(f"self.kb_path:{self.kb_path },self.index_name:{self.index_name}, self.scheme:{self.scheme},self.IP:{self.IP},"
|
|
||||||
f"self.PORT:{self.PORT},self.user:{self.user},self.password:{self.password},self.verify_certs:{self.verify_certs},"
|
|
||||||
f"self.client_cert:{self.client_cert},self.client_key:{self.client_key},self.dims_length:{self.dims_length}")
|
|
||||||
try:
|
try:
|
||||||
connection_info = dict(
|
connection_info = dict(
|
||||||
hosts=f"{self.scheme}://{self.IP}:{self.PORT}"
|
host=f"{self.scheme}://{self.IP}:{self.PORT}"
|
||||||
)
|
)
|
||||||
if self.user != "" and self.password != "":
|
if self.user != "" and self.password != "":
|
||||||
connection_info.update(basic_auth=(self.user, self.password))
|
connection_info.update(basic_auth=(self.user, self.password))
|
||||||
|
|
@ -56,9 +53,7 @@ class ESKBService(KBService):
|
||||||
connection_info.update(client_key=self.client_key)
|
connection_info.update(client_key=self.client_key)
|
||||||
connection_info.update(client_cert=self.client_cert)
|
connection_info.update(client_cert=self.client_cert)
|
||||||
# ES python客户端连接(仅连接)
|
# ES python客户端连接(仅连接)
|
||||||
logger.info(f"connection_info:{connection_info}")
|
|
||||||
self.es_client_python = Elasticsearch(**connection_info)
|
self.es_client_python = Elasticsearch(**connection_info)
|
||||||
logger.info(f"after Elasticsearch connection_info:{connection_info}")
|
|
||||||
except ConnectionError:
|
except ConnectionError:
|
||||||
logger.error("连接到 Elasticsearch 失败!")
|
logger.error("连接到 Elasticsearch 失败!")
|
||||||
raise ConnectionError
|
raise ConnectionError
|
||||||
|
|
@ -89,10 +84,9 @@ class ESKBService(KBService):
|
||||||
es_url=f"{self.scheme}://{self.IP}:{self.PORT}",
|
es_url=f"{self.scheme}://{self.IP}:{self.PORT}",
|
||||||
index_name=self.index_name,
|
index_name=self.index_name,
|
||||||
query_field="context",
|
query_field="context",
|
||||||
distance_strategy="COSINE",
|
|
||||||
vector_query_field="dense_vector",
|
vector_query_field="dense_vector",
|
||||||
embedding=self.embeddings_model,
|
embedding=self.embeddings_model,
|
||||||
# strategy=ApproxRetrievalStrategy(),
|
strategy=ApproxRetrievalStrategy(),
|
||||||
es_params={
|
es_params={
|
||||||
"timeout": 60,
|
"timeout": 60,
|
||||||
},
|
},
|
||||||
|
|
@ -107,7 +101,6 @@ class ESKBService(KBService):
|
||||||
params["es_params"].update(client_key=self.client_key)
|
params["es_params"].update(client_key=self.client_key)
|
||||||
params["es_params"].update(client_cert=self.client_cert)
|
params["es_params"].update(client_cert=self.client_cert)
|
||||||
self.db = ElasticsearchStore(**params)
|
self.db = ElasticsearchStore(**params)
|
||||||
logger.info(f"after ElasticsearchStore create params:{params}")
|
|
||||||
except ConnectionError:
|
except ConnectionError:
|
||||||
logger.error("### 初始化 Elasticsearch 失败!")
|
logger.error("### 初始化 Elasticsearch 失败!")
|
||||||
raise ConnectionError
|
raise ConnectionError
|
||||||
|
|
@ -140,72 +133,16 @@ class ESKBService(KBService):
|
||||||
def vs_type(self) -> str:
|
def vs_type(self) -> str:
|
||||||
return SupportedVSType.ES
|
return SupportedVSType.ES
|
||||||
|
|
||||||
def do_search(self, query: str, top_k: int, score_threshold: float)->List[Document]:
|
def do_search(self, query: str, top_k: int, score_threshold: float):
|
||||||
# 确保 ElasticsearchStore 正确初始化
|
|
||||||
if not hasattr(self, "db") or self.db is None:
|
|
||||||
raise ValueError("ElasticsearchStore (db) not initialized.")
|
|
||||||
|
|
||||||
# 文本相似性检索
|
# 文本相似性检索
|
||||||
retriever = get_Retriever("vectorstore").from_vectorstore(
|
retriever = get_Retriever("vectorstore").from_vectorstore(
|
||||||
self.db,
|
self.db,
|
||||||
top_k=top_k,
|
top_k=top_k,
|
||||||
score_threshold=score_threshold,
|
score_threshold=score_threshold,
|
||||||
)
|
)
|
||||||
|
|
||||||
docs = retriever.get_relevant_documents(query)
|
docs = retriever.get_relevant_documents(query)
|
||||||
|
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
if self.es_client_python.indices.exists(index=self.index_name):
|
|
||||||
logger.info(f"******ESKBService searchByContent {self.index_name},query:{query}")
|
|
||||||
tem_query = {
|
|
||||||
"query": {"match": {
|
|
||||||
"context": "*" + query + "*"
|
|
||||||
}},
|
|
||||||
"highlight":{"fields":{
|
|
||||||
"context":{}
|
|
||||||
}}
|
|
||||||
}
|
|
||||||
search_results = self.es_client_python.search(index=self.index_name, body=tem_query, size=top_k)
|
|
||||||
hits = [hit for hit in search_results["hits"]["hits"]]
|
|
||||||
|
|
||||||
docs_and_scores = []
|
|
||||||
for hit in hits:
|
|
||||||
highlighted_contexts = ""
|
|
||||||
if 'highlight' in hit:
|
|
||||||
highlighted_contexts = " ".join(hit['highlight']['context'])
|
|
||||||
#print(f"******searchByContent highlighted_contexts:{highlighted_contexts}")
|
|
||||||
docs_and_scores.append(DocumentWithVSId(
|
|
||||||
page_content=highlighted_contexts,
|
|
||||||
metadata=hit["_source"]["metadata"],
|
|
||||||
id = hit["_id"],
|
|
||||||
))
|
|
||||||
return docs_and_scores
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
if self.es_client_python.indices.exists(index=self.index_name):
|
|
||||||
logger.info(f"******ESKBService searchbyContentInternal {self.index_name},query:{query}")
|
|
||||||
tem_query = {
|
|
||||||
"query": {"match": {
|
|
||||||
"context": "*" + query + "*"
|
|
||||||
}}
|
|
||||||
}
|
|
||||||
search_results = self.es_client_python.search(index=self.index_name, body=tem_query, size=top_k)
|
|
||||||
hits = [hit for hit in search_results["hits"]["hits"]]
|
|
||||||
docs_and_scores = [
|
|
||||||
# (
|
|
||||||
Document(
|
|
||||||
page_content=hit["_source"]["context"],
|
|
||||||
metadata=hit["_source"]["metadata"],
|
|
||||||
)
|
|
||||||
# ,
|
|
||||||
# 1.3,
|
|
||||||
# )
|
|
||||||
for hit in hits
|
|
||||||
]
|
|
||||||
# logger.info(f"docs_and_scores:{docs_and_scores}")
|
|
||||||
return docs_and_scores
|
|
||||||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||||||
results = []
|
results = []
|
||||||
for doc_id in ids:
|
for doc_id in ids:
|
||||||
|
|
@ -242,13 +179,10 @@ class ESKBService(KBService):
|
||||||
},
|
},
|
||||||
"track_total_hits": True,
|
"track_total_hits": True,
|
||||||
}
|
}
|
||||||
print(f"***do_delete_doc: kb_file.filepath:{kb_file.filepath}, kb.filename:{kb_file.filename}")
|
# 注意设置size,默认返回10个,es检索设置track_total_hits为True返回数据库中真实的size。
|
||||||
print(f"***do_delete_doc: kb.filename:{kb_file.filename}")
|
size = self.es_client_python.search(body=query)["hits"]["total"]["value"]
|
||||||
# 注意设置size,默认返回10个。
|
search_results = self.es_client_python.search(body=query, size=size)
|
||||||
search_results = self.es_client_python.search(index=self.index_name, body=query,size=200)
|
delete_list = [hit["_id"] for hit in search_results["hits"]["hits"]]
|
||||||
delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
|
|
||||||
size = len(delete_list)
|
|
||||||
#print(f"***do_delete_doc: 删除的size:{size}, {delete_list}")
|
|
||||||
if len(delete_list) == 0:
|
if len(delete_list) == 0:
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
|
|
@ -278,34 +212,20 @@ class ESKBService(KBService):
|
||||||
|
|
||||||
if self.es_client_python.indices.exists(index=self.index_name):
|
if self.es_client_python.indices.exists(index=self.index_name):
|
||||||
file_path = docs[0].metadata.get("source")
|
file_path = docs[0].metadata.get("source")
|
||||||
print(f"****************do_add_doc, file_path:{file_path}")
|
query = {
|
||||||
# enhanced by weiweiwang 2025/2/24 to specific index name
|
|
||||||
# query = {
|
|
||||||
# "query": {
|
|
||||||
# "term": {"metadata.source.keyword": file_path},
|
|
||||||
# # "term": {"_index": self.index_name},
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
query = {
|
|
||||||
"query": {
|
"query": {
|
||||||
"bool": {
|
"term": {"metadata.source.keyword": file_path},
|
||||||
"must": [
|
"term": {"_index": self.index_name},
|
||||||
{ "term": { "metadata.source.keyword": file_path } },
|
|
||||||
{ "term": { "_index": self.index_name } }
|
|
||||||
]
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
# 注意设置size,默认返回10个。
|
# 注意设置size,默认返回10个。
|
||||||
search_results = self.es_client_python.search(body=query, size=200)
|
search_results = self.es_client_python.search(body=query, size=50)
|
||||||
if len(search_results["hits"]["hits"]) == 0:
|
if len(search_results["hits"]["hits"]) == 0:
|
||||||
raise ValueError("召回元素个数为0")
|
raise ValueError("召回元素个数为0")
|
||||||
info_docs = [
|
info_docs = [
|
||||||
{"id": hit["_id"], "metadata": hit["_source"]["metadata"]}
|
{"id": hit["_id"], "metadata": hit["_source"]["metadata"]}
|
||||||
for hit in search_results["hits"]["hits"]
|
for hit in search_results["hits"]["hits"]
|
||||||
]
|
]
|
||||||
# size = len(info_docs)
|
|
||||||
# print(f"do_add_doc 召回元素个数:{size}")
|
|
||||||
return info_docs
|
return info_docs
|
||||||
|
|
||||||
def do_clear_vs(self):
|
def do_clear_vs(self):
|
||||||
|
|
|
||||||
|
|
@ -78,12 +78,6 @@ class FaissKBService(KBService):
|
||||||
docs = retriever.get_relevant_documents(query)
|
docs = retriever.get_relevant_documents(query)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
return None
|
|
||||||
|
|
||||||
def do_add_doc(
|
def do_add_doc(
|
||||||
self,
|
self,
|
||||||
docs: List[Document],
|
docs: List[Document],
|
||||||
|
|
|
||||||
|
|
@ -88,12 +88,6 @@ class MilvusKBService(KBService):
|
||||||
docs = retriever.get_relevant_documents(query)
|
docs = retriever.get_relevant_documents(query)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
for k, v in doc.metadata.items():
|
for k, v in doc.metadata.items():
|
||||||
|
|
|
||||||
|
|
@ -84,12 +84,6 @@ class PGKBService(KBService):
|
||||||
docs = retriever.get_relevant_documents(query)
|
docs = retriever.get_relevant_documents(query)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||||||
ids = self.pg_vector.add_documents(docs)
|
ids = self.pg_vector.add_documents(docs)
|
||||||
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
|
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
|
||||||
|
|
|
||||||
|
|
@ -94,13 +94,6 @@ class RelytKBService(KBService):
|
||||||
docs = self.relyt.similarity_search_with_score(query, top_k)
|
docs = self.relyt.similarity_search_with_score(query, top_k)
|
||||||
return score_threshold_process(score_threshold, top_k, docs)
|
return score_threshold_process(score_threshold, top_k, docs)
|
||||||
|
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||||||
print(docs)
|
print(docs)
|
||||||
ids = self.relyt.add_documents(docs)
|
ids = self.relyt.add_documents(docs)
|
||||||
|
|
|
||||||
|
|
@ -79,12 +79,6 @@ class ZillizKBService(KBService):
|
||||||
docs = retriever.get_relevant_documents(query)
|
docs = retriever.get_relevant_documents(query)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
def searchbyContent(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def searchbyContentInternal(self, query:str, top_k: int = 2):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]:
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
for k, v in doc.metadata.items():
|
for k, v in doc.metadata.items():
|
||||||
|
|
|
||||||
|
|
@ -70,9 +70,6 @@ def list_files_from_folder(kb_name: str):
|
||||||
for x in ["temp", "tmp", ".", "~$"]:
|
for x in ["temp", "tmp", ".", "~$"]:
|
||||||
if tail.startswith(x):
|
if tail.startswith(x):
|
||||||
return True
|
return True
|
||||||
if "_source.txt" in tail.lower() or "_split.txt" in tail.lower():
|
|
||||||
return True
|
|
||||||
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def process_entry(entry):
|
def process_entry(entry):
|
||||||
|
|
@ -425,15 +422,15 @@ class KnowledgeFile:
|
||||||
docs = zh_first_title_enhance(docs)
|
docs = zh_first_title_enhance(docs)
|
||||||
docs = customize_zh_title_enhance(docs)
|
docs = customize_zh_title_enhance(docs)
|
||||||
|
|
||||||
i = 1
|
# i = 1
|
||||||
outputfile = file_name_without_extension + "_split.txt"
|
# outputfile = file_name_without_extension + "_split.txt"
|
||||||
# 打开文件以写入模式
|
# # 打开文件以写入模式
|
||||||
with open(outputfile, 'w') as file:
|
# with open(outputfile, 'w') as file:
|
||||||
for doc in docs:
|
# for doc in docs:
|
||||||
#print(f"**********切分段{i}:{doc}")
|
# #print(f"**********切分段{i}:{doc}")
|
||||||
file.write(f"\n**********切分段{i}")
|
# file.write(f"\n**********切分段{i}")
|
||||||
file.write(doc.page_content)
|
# file.write(doc.page_content)
|
||||||
i = i+1
|
# i = i+1
|
||||||
|
|
||||||
self.splited_docs = docs
|
self.splited_docs = docs
|
||||||
return self.splited_docs
|
return self.splited_docs
|
||||||
|
|
|
||||||
|
|
@ -488,7 +488,7 @@ class ToolSettings(BaseFileSettings):
|
||||||
|
|
||||||
search_internet: dict = {
|
search_internet: dict = {
|
||||||
"use": False,
|
"use": False,
|
||||||
"search_engine_name": "zhipu_search",
|
"search_engine_name": "duckduckgo",
|
||||||
"search_engine_config": {
|
"search_engine_config": {
|
||||||
"bing": {
|
"bing": {
|
||||||
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
|
"bing_search_url": "https://api.bing.microsoft.com/v7.0/search",
|
||||||
|
|
@ -506,21 +506,11 @@ class ToolSettings(BaseFileSettings):
|
||||||
"engines": [],
|
"engines": [],
|
||||||
"categories": [],
|
"categories": [],
|
||||||
"language": "zh-CN",
|
"language": "zh-CN",
|
||||||
},
|
|
||||||
"tavily":{
|
|
||||||
"tavily_api_key": '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',
|
|
||||||
"include_answer": True,
|
|
||||||
"search_depth": "advanced",
|
|
||||||
"include_raw_content": True,
|
|
||||||
"max_results": 1
|
|
||||||
},
|
|
||||||
"zhipu_search":{
|
|
||||||
"zhipu_api_key": ""
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"top_k": 1,
|
"top_k": 5,
|
||||||
"verbose": "Origin",
|
"verbose": "Origin",
|
||||||
"conclude_prompt": "<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题,不得包含有重复的词汇或句子。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
|
"conclude_prompt": "<指令>这是搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 "
|
||||||
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
|
"</指令>\n<已知信息>{{ context }}</已知信息>\n"
|
||||||
"<问题>\n"
|
"<问题>\n"
|
||||||
"{{ question }}\n"
|
"{{ question }}\n"
|
||||||
|
|
@ -660,7 +650,7 @@ class PromptSettings(BaseFileSettings):
|
||||||
|
|
||||||
rag: dict = {
|
rag: dict = {
|
||||||
"default": (
|
"default": (
|
||||||
"【指令】根据已知信息,简洁和专业的来回答问题,不得包含有重复的词汇或句子。"
|
"【指令】根据已知信息,简洁和专业的来回答问题。"
|
||||||
"如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。\n\n"
|
"如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。\n\n"
|
||||||
"【已知信息】{{context}}\n\n"
|
"【已知信息】{{context}}\n\n"
|
||||||
"【问题】{{question}}\n"
|
"【问题】{{question}}\n"
|
||||||
|
|
@ -751,8 +741,6 @@ class PromptSettings(BaseFileSettings):
|
||||||
"Begin!\n\n"
|
"Begin!\n\n"
|
||||||
"Question: {input}\n\n"
|
"Question: {input}\n\n"
|
||||||
"{agent_scratchpad}\n\n"
|
"{agent_scratchpad}\n\n"
|
||||||
"Important: After the last Observation, you must always add a Final Answer "
|
|
||||||
"summarizing the result. Do not skip this step."
|
|
||||||
),
|
),
|
||||||
"structured-chat-agent": (
|
"structured-chat-agent": (
|
||||||
"Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n"
|
"Respond to the human as helpfully and accurately as possible. You have access to the following tools:\n\n"
|
||||||
|
|
|
||||||
|
|
@ -46,7 +46,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
with st.sidebar:
|
with st.sidebar:
|
||||||
st.image(
|
st.image(
|
||||||
get_img_base64("logo-long-chatchat-trans-v2.png"), use_column_width=True
|
get_img_base64("logo-long-chatchat-trans-v2.png"), use_container_width=True
|
||||||
)
|
)
|
||||||
st.caption(
|
st.caption(
|
||||||
f"""<p align="right">当前版本:{__version__}</p>""",
|
f"""<p align="right">当前版本:{__version__}</p>""",
|
||||||
|
|
|
||||||
|
|
@ -238,7 +238,7 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||||
doc_details,
|
doc_details,
|
||||||
{
|
{
|
||||||
("No", "序号"): {},
|
("No", "序号"): {},
|
||||||
("file_name", "文档名称"): {"filter": "agTextColumnFilter"},
|
("file_name", "文档名称"): {},
|
||||||
# ("file_ext", "文档类型"): {},
|
# ("file_ext", "文档类型"): {},
|
||||||
# ("file_version", "文档版本"): {},
|
# ("file_version", "文档版本"): {},
|
||||||
("document_loader", "文档加载器"): {},
|
("document_loader", "文档加载器"): {},
|
||||||
|
|
@ -398,7 +398,7 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||||
cellEditor="agLargeTextCellEditor",
|
cellEditor="agLargeTextCellEditor",
|
||||||
cellEditorPopup=True,
|
cellEditorPopup=True,
|
||||||
autoWidth=True,
|
autoWidth=True,
|
||||||
cellEditorParams= { "maxLength": 1500}
|
cellEditorParams= { "maxLength": 1000}
|
||||||
)
|
)
|
||||||
gb.configure_column(
|
gb.configure_column(
|
||||||
"to_del",
|
"to_del",
|
||||||
|
|
@ -406,8 +406,8 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||||
editable=True,
|
editable=True,
|
||||||
width=50,
|
width=50,
|
||||||
wrapHeaderText=True,
|
wrapHeaderText=True,
|
||||||
cellEditor="agTextCellEditor",
|
cellEditor="agCheckboxCellEditor",
|
||||||
cellRender="agTextCellRenderer",
|
cellRender="agCheckboxCellRenderer",
|
||||||
)
|
)
|
||||||
# 启用分页
|
# 启用分页
|
||||||
gb.configure_pagination(
|
gb.configure_pagination(
|
||||||
|
|
@ -428,15 +428,15 @@ def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
|
||||||
changed_docs = []
|
changed_docs = []
|
||||||
for index, row in edit_docs.data.iterrows():
|
for index, row in edit_docs.data.iterrows():
|
||||||
origin_doc = origin_docs[row["id"]]
|
origin_doc = origin_docs[row["id"]]
|
||||||
# if row["page_content"] != origin_doc["page_content"]:
|
if row["page_content"] != origin_doc["page_content"]:
|
||||||
if row["to_del"] not in ["Y", "y", 1]:
|
if row["to_del"] not in ["Y", "y", 1]:
|
||||||
changed_docs.append(
|
changed_docs.append(
|
||||||
{
|
{
|
||||||
"page_content": row["page_content"],
|
"page_content": row["page_content"],
|
||||||
"type": row["type"],
|
"type": row["type"],
|
||||||
"metadata": json.loads(row["metadata"]),
|
"metadata": json.loads(row["metadata"]),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
if changed_docs:
|
if changed_docs:
|
||||||
if api.update_kb_docs(
|
if api.update_kb_docs(
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue