# 该文件封装了对api.py的请求,可以被不同的webui使用 # 通过ApiRequest和AsyncApiRequest支持同步/异步调用 import base64 import contextlib import json import logging import os from io import BytesIO from pathlib import Path from typing import * import httpx from chatchat.settings import Settings from chatchat.server.utils import api_address, get_httpx_client, set_httpx_config, get_default_embedding from chatchat.utils import build_logger logger = build_logger() set_httpx_config() class ApiRequest: """ api.py调用的封装(同步模式),简化api调用方式 """ def __init__( self, base_url: str = api_address(), timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT, ): self.base_url = base_url self.timeout = timeout self._use_async = False self._client = None @property def client(self): if self._client is None or self._client.is_closed: self._client = get_httpx_client( base_url=self.base_url, use_async=self._use_async, timeout=self.timeout ) return self._client def get( self, url: str, params: Union[Dict, List[Tuple], bytes] = None, retry: int = 3, stream: bool = False, **kwargs: Any, ) -> Union[httpx.Response, Iterator[httpx.Response], None]: while retry > 0: try: if stream: return self.client.stream("GET", url, params=params, **kwargs) else: return self.client.get(url, params=params, **kwargs) except Exception as e: msg = f"error when get {url}: {e}" logger.error(f"{e.__class__.__name__}: {msg}") retry -= 1 def post( self, url: str, data: Dict = None, json: Dict = None, retry: int = 3, stream: bool = False, **kwargs: Any, ) -> Union[httpx.Response, Iterator[httpx.Response], None]: while retry > 0: try: # print(kwargs) if stream: return self.client.stream( "POST", url, data=data, json=json, **kwargs ) else: return self.client.post(url, data=data, json=json, **kwargs) except Exception as e: msg = f"error when post {url}: {e}" logger.error(f"{e.__class__.__name__}: {msg}") retry -= 1 def delete( self, url: str, data: Dict = None, json: Dict = None, retry: int = 3, stream: bool = False, **kwargs: Any, ) -> Union[httpx.Response, Iterator[httpx.Response], None]: while retry > 0: try: if stream: return self.client.stream( "DELETE", url, data=data, json=json, **kwargs ) else: return self.client.delete(url, data=data, json=json, **kwargs) except Exception as e: msg = f"error when delete {url}: {e}" logger.error(f"{e.__class__.__name__}: {msg}") retry -= 1 def _httpx_stream2generator( self, response: contextlib._GeneratorContextManager, as_json: bool = False, ): """ 将httpx.stream返回的GeneratorContextManager转化为普通生成器 """ async def ret_async(response, as_json): try: async with response as r: chunk_cache = "" async for chunk in r.aiter_text(None): if not chunk: # fastchat api yield empty bytes on start and end continue if as_json: try: if chunk.startswith("data: "): data = json.loads(chunk_cache + chunk[6:-2]) elif chunk.startswith(":"): # skip sse comment line continue else: data = json.loads(chunk_cache + chunk) chunk_cache = "" yield data except Exception as e: msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。" logger.error(f"{e.__class__.__name__}: {msg}") if chunk.startswith("data: "): chunk_cache += chunk[6:-2] elif chunk.startswith(":"): # skip sse comment line continue else: chunk_cache += chunk continue else: # print(chunk, end="", flush=True) yield chunk except httpx.ConnectError as e: msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})" logger.error(msg) yield {"code": 500, "msg": msg} except httpx.ReadTimeout as e: msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})" logger.error(msg) yield {"code": 500, "msg": msg} except Exception as e: msg = f"API通信遇到错误:{e}" logger.error(f"{e.__class__.__name__}: {msg}") yield {"code": 500, "msg": msg} def ret_sync(response, as_json): try: with response as r: chunk_cache = "" for chunk in r.iter_text(None): if not chunk: # fastchat api yield empty bytes on start and end continue if as_json: try: if chunk.startswith("data: "): data = json.loads(chunk_cache + chunk[6:-2]) elif chunk.startswith(":"): # skip sse comment line continue else: data = json.loads(chunk_cache + chunk) chunk_cache = "" yield data except Exception as e: msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。" logger.error(f"{e.__class__.__name__}: {msg}") if chunk.startswith("data: "): chunk_cache += chunk[6:-2] elif chunk.startswith(":"): # skip sse comment line continue else: chunk_cache += chunk continue else: # print(chunk, end="", flush=True) yield chunk except httpx.ConnectError as e: msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})" logger.error(msg) yield {"code": 500, "msg": msg} except httpx.ReadTimeout as e: msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})" logger.error(msg) yield {"code": 500, "msg": msg} except Exception as e: msg = f"API通信遇到错误:{e}" logger.error(f"{e.__class__.__name__}: {msg}") yield {"code": 500, "msg": msg} if self._use_async: return ret_async(response, as_json) else: return ret_sync(response, as_json) def _get_response_value( self, response: httpx.Response, as_json: bool = False, value_func: Callable = None, ): """ 转换同步或异步请求返回的响应 `as_json`: 返回json `value_func`: 用户可以自定义返回值,该函数接受response或json """ def to_json(r): try: return r.json() except Exception as e: msg = "API未能返回正确的JSON。" + str(e) logger.error(f"{e.__class__.__name__}: {msg}") return {"code": 500, "msg": msg, "data": None} if value_func is None: value_func = lambda r: r async def ret_async(response): if as_json: return value_func(to_json(await response)) else: return value_func(await response) if self._use_async: return ret_async(response) else: if as_json: return value_func(to_json(response)) else: return value_func(response) # 服务器信息 def get_server_configs(self, **kwargs) -> Dict: response = self.post("/server/configs", **kwargs) return self._get_response_value(response, as_json=True) def get_prompt_template( self, type: str = "llm_chat", name: str = "default", **kwargs, ) -> str: data = { "type": type, "name": name, } response = self.post("/server/get_prompt_template", json=data, **kwargs) return self._get_response_value(response, value_func=lambda r: r.text) #LLM对话 def chat_completion( self, query: str, conversation_id: str = None, history_len: int = -1, history: List[Dict] = [], stream: bool = True, model: str = Settings.model_settings.DEFAULT_LLM_MODEL, temperature: float = 0.6, max_tokens: int = None, prompt_name: str = "default", **kwargs, ): ''' 对应api.py/chat/completion接口 ''' data = { "query": query, "conversation_id": conversation_id, "history_len": history_len, "history": history, "stream": stream, "model_name": model, "temperature": temperature, "max_tokens": max_tokens, "prompt_name": prompt_name, } # print(f"received input message:") # pprint(data) logger.info(f"chat_completion:/chat/llm_chat") response = self.post("/chat/llm_chat", json=data, stream=True, **kwargs) return self._httpx_stream2generator(response, as_json=True) # 对话相关操作 def chat_chat( self, query: str, metadata: dict, conversation_id: str = None, history_len: int = -1, history: List[Dict] = [], stream: bool = True, chat_model_config: Dict = None, tool_config: Dict = None, **kwargs, ): """ 对应api.py/chat/chat接口 """ data = { "query": query, "metadata": metadata, "conversation_id": conversation_id, "history_len": history_len, "history": history, "stream": stream, "chat_model_config": chat_model_config, "tool_config": tool_config, } # print(f"received input message:") # pprint(data) response = self.post("/chat/chat", json=data, stream=True, **kwargs) return self._httpx_stream2generator(response, as_json=True) def upload_temp_docs( self, files: List[Union[str, Path, bytes]], knowledge_id: str = None, chunk_size=Settings.kb_settings.CHUNK_SIZE, chunk_overlap=Settings.kb_settings.OVERLAP_SIZE, zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE, ): """ 对应api.py/knowledge_base/upload_temp_docs接口 """ def convert_file(file, filename=None): if isinstance(file, bytes): # raw bytes file = BytesIO(file) elif hasattr(file, "read"): # a file io like object filename = filename or file.name else: # a local path file = Path(file).absolute().open("rb") filename = filename or os.path.split(file.name)[-1] return filename, file files = [convert_file(file) for file in files] data = { "knowledge_id": knowledge_id, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "zh_title_enhance": zh_title_enhance, } response = self.post( "/knowledge_base/upload_temp_docs", data=data, files=[("files", (filename, file)) for filename, file in files], ) return self._get_response_value(response, as_json=True) def file_chat( self, query: str, knowledge_id: str, top_k: int = Settings.kb_settings.VECTOR_SEARCH_TOP_K, score_threshold: float = Settings.kb_settings.SCORE_THRESHOLD, history: List[Dict] = [], stream: bool = True, model: str = None, temperature: float = 0.9, max_tokens: int = None, prompt_name: str = "default", ): """ 对应api.py/chat/file_chat接口 """ data = { "query": query, "knowledge_id": knowledge_id, "top_k": top_k, "score_threshold": score_threshold, "history": history, "stream": stream, "model_name": model, "temperature": temperature, "max_tokens": max_tokens, "prompt_name": prompt_name, } response = self.post( "/chat/file_chat", json=data, stream=True, ) return self._httpx_stream2generator(response, as_json=True) # 知识库相关操作 def list_knowledge_bases( self, ): """ 对应api.py/knowledge_base/list_knowledge_bases接口 """ response = self.get("/knowledge_base/list_knowledge_bases") return self._get_response_value( response, as_json=True, value_func=lambda r: r.get("data", []) ) def create_knowledge_base( self, knowledge_base_name: str, vector_store_type: str = Settings.kb_settings.DEFAULT_VS_TYPE, embed_model: str = get_default_embedding(), ): """ 对应api.py/knowledge_base/create_knowledge_base接口 """ data = { "knowledge_base_name": knowledge_base_name, "vector_store_type": vector_store_type, "embed_model": embed_model, } response = self.post( "/knowledge_base/create_knowledge_base", json=data, ) return self._get_response_value(response, as_json=True) def delete_knowledge_base( self, knowledge_base_name: str, ): """ 对应api.py/knowledge_base/delete_knowledge_base接口 """ response = self.post( "/knowledge_base/delete_knowledge_base", json=f"{knowledge_base_name}", ) return self._get_response_value(response, as_json=True) def list_kb_docs( self, knowledge_base_name: str, ): """ 对应api.py/knowledge_base/list_files接口 """ response = self.get( "/knowledge_base/list_files", params={"knowledge_base_name": knowledge_base_name}, ) return self._get_response_value( response, as_json=True, value_func=lambda r: r.get("data", []) ) def search_kb_docs( self, knowledge_base_name: str, query: str = "", top_k: int = Settings.kb_settings.VECTOR_SEARCH_TOP_K, score_threshold: int = Settings.kb_settings.SCORE_THRESHOLD, file_name: str = "", metadata: dict = {}, ) -> List: """ 对应api.py/knowledge_base/search_docs接口 """ data = { "query": query, "knowledge_base_name": knowledge_base_name, "top_k": top_k, "score_threshold": score_threshold, "file_name": file_name, "metadata": metadata, } response = self.post( "/knowledge_base/search_docs", json=data, ) return self._get_response_value(response, as_json=True) def upload_kb_docs( self, files: List[Union[str, Path, bytes]], knowledge_base_name: str, override: bool = False, to_vector_store: bool = True, chunk_size=Settings.kb_settings.CHUNK_SIZE, chunk_overlap=Settings.kb_settings.OVERLAP_SIZE, zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE, docs: Dict = {}, not_refresh_vs_cache: bool = False, ): """ 对应api.py/knowledge_base/upload_docs接口 """ def convert_file(file, filename=None): if isinstance(file, bytes): # raw bytes file = BytesIO(file) elif hasattr(file, "read"): # a file io like object filename = filename or file.name else: # a local path file = Path(file).absolute().open("rb") filename = filename or os.path.split(file.name)[-1] return filename, file files = [convert_file(file) for file in files] data = { "knowledge_base_name": knowledge_base_name, "override": override, "to_vector_store": to_vector_store, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "zh_title_enhance": zh_title_enhance, "docs": docs, "not_refresh_vs_cache": not_refresh_vs_cache, } if isinstance(data["docs"], dict): data["docs"] = json.dumps(data["docs"], ensure_ascii=False) response = self.post( "/knowledge_base/upload_docs", data=data, files=[("files", (filename, file)) for filename, file in files], ) return self._get_response_value(response, as_json=True) def delete_kb_docs( self, knowledge_base_name: str, file_names: List[str], delete_content: bool = False, not_refresh_vs_cache: bool = False, ): """ 对应api.py/knowledge_base/delete_docs接口 """ data = { "knowledge_base_name": knowledge_base_name, "file_names": file_names, "delete_content": delete_content, "not_refresh_vs_cache": not_refresh_vs_cache, } response = self.post( "/knowledge_base/delete_docs", json=data, ) return self._get_response_value(response, as_json=True) def update_kb_info(self, knowledge_base_name, kb_info): """ 对应api.py/knowledge_base/update_info接口 """ data = { "knowledge_base_name": knowledge_base_name, "kb_info": kb_info, } response = self.post( "/knowledge_base/update_info", json=data, ) return self._get_response_value(response, as_json=True) def update_kb_docs( self, knowledge_base_name: str, file_names: List[str], override_custom_docs: bool = False, chunk_size=Settings.kb_settings.CHUNK_SIZE, chunk_overlap=Settings.kb_settings.OVERLAP_SIZE, zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE, docs: Dict = {}, not_refresh_vs_cache: bool = False, ): """ 对应api.py/knowledge_base/update_docs接口 """ data = { "knowledge_base_name": knowledge_base_name, "file_names": file_names, "override_custom_docs": override_custom_docs, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "zh_title_enhance": zh_title_enhance, "docs": docs, "not_refresh_vs_cache": not_refresh_vs_cache, } if isinstance(data["docs"], dict): data["docs"] = json.dumps(data["docs"], ensure_ascii=False) response = self.post( "/knowledge_base/update_docs", json=data, ) return self._get_response_value(response, as_json=True) def recreate_vector_store( self, knowledge_base_name: str, allow_empty_kb: bool = True, vs_type: str = Settings.kb_settings.DEFAULT_VS_TYPE, embed_model: str = get_default_embedding(), chunk_size=Settings.kb_settings.CHUNK_SIZE, chunk_overlap=Settings.kb_settings.OVERLAP_SIZE, zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE, ): """ 对应api.py/knowledge_base/recreate_vector_store接口 """ data = { "knowledge_base_name": knowledge_base_name, "allow_empty_kb": allow_empty_kb, "vs_type": vs_type, "embed_model": embed_model, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "zh_title_enhance": zh_title_enhance, } response = self.post( "/knowledge_base/recreate_vector_store", json=data, stream=True, timeout=None, ) return self._httpx_stream2generator(response, as_json=True) def embed_texts( self, texts: List[str], embed_model: str = get_default_embedding(), to_query: bool = False, ) -> List[List[float]]: """ 对文本进行向量化,可选模型包括本地 embed_models 和支持 embeddings 的在线模型 """ data = { "texts": texts, "embed_model": embed_model, "to_query": to_query, } resp = self.post( "/other/embed_texts", json=data, ) return self._get_response_value( resp, as_json=True, value_func=lambda r: r.get("data") ) def chat_feedback( self, message_id: str, score: int, reason: str = "", ) -> int: """ 反馈对话评价 """ data = { "message_id": message_id, "score": score, "reason": reason, } resp = self.post("/chat/feedback", json=data) return self._get_response_value(resp) def list_tools(self) -> Dict: """ 列出所有工具 """ resp = self.get("/tools") return self._get_response_value( resp, as_json=True, value_func=lambda r: r.get("data", {}) ) def call_tool( self, name: str, tool_input: Dict = {}, ): """ 调用工具 """ data = { "name": name, "tool_input": tool_input, } resp = self.post("/tools/call", json=data) return self._get_response_value( resp, as_json=True, value_func=lambda r: r.get("data") ) class AsyncApiRequest(ApiRequest): def __init__( self, base_url: str = api_address(), timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT ): super().__init__(base_url, timeout) self._use_async = True def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str: """ return error message if error occured when requests API """ if isinstance(data, dict): if key in data: return data[key] if "code" in data and data["code"] != 200: return data["msg"] return "" def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str: """ return error message if error occured when requests API """ if ( isinstance(data, dict) and key in data and "code" in data and data["code"] == 200 ): return data[key] return "" def get_img_base64(file_name: str) -> str: """ get_img_base64 used in streamlit. absolute local path not working on windows. """ image = f"{Settings.basic_settings.IMG_DIR}/{file_name}" # 读取图片 with open(image, "rb") as f: buffer = BytesIO(f.read()) base_str = base64.b64encode(buffer.getvalue()).decode() return f"data:image/png;base64,{base_str}" if __name__ == "__main__": api = ApiRequest() aapi = AsyncApiRequest() # with api.chat_chat("你好") as r: # for t in r.iter_text(None): # print(t) # r = api.chat_chat("你好", no_remote_api=True) # for t in r: # print(t) # r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True) # for t in r: # print(t) # print(api.list_knowledge_bases())