import asyncio from typing import AsyncIterable, Optional from fastapi import Body from langchain.callbacks import AsyncIteratorCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from sse_starlette.sse import EventSourceResponse from chatchat.server.utils import get_OpenAI, get_prompt_template, wrap_done, build_logger logger = build_logger() async def completion( query: str = Body(..., description="用户输入", examples=["恼羞成怒"]), stream: bool = Body(False, description="流式输出"), echo: bool = Body(False, description="除了输出之外,还回显输入"), model_name: str = Body(None, description="LLM 模型名称。"), temperature: float = Body(0.01, description="LLM 采样温度", ge=0.0, le=1.0), max_tokens: Optional[int] = Body( 1024, description="限制LLM生成Token数量,默认None代表模型最大值" ), # top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0), prompt_name: str = Body( "default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)" ), ): # TODO: 因ApiModelWorker 默认是按chat处理的,会对params["prompt"] 解析为messages,因此ApiModelWorker 使用时需要有相应处理 async def completion_iterator( query: str, model_name: str = None, prompt_name: str = prompt_name, echo: bool = echo, ) -> AsyncIterable[str]: try: nonlocal max_tokens callback = AsyncIteratorCallbackHandler() if isinstance(max_tokens, int) and max_tokens <= 0: max_tokens = None logger.info(f"model_name:{model_name, prompt_name:{prompt_name}, echo:{echo}}") model = get_OpenAI( model_name=model_name, temperature=temperature, max_tokens=max_tokens, callbacks=[callback], echo=echo, local_wrap=True, ) prompt_template = get_prompt_template("llm_model", prompt_name) prompt = PromptTemplate.from_template(prompt_template, template_format="jinja2") logger.info(f"prompt_template:{prompt}") chain = LLMChain(prompt=prompt, llm=model) # Begin a task that runs in the background. task = asyncio.create_task( wrap_done(chain.acall({"input": query}), callback.done), ) if stream: async for token in callback.aiter(): # Use server-sent-events to stream the response yield token else: answer = "" async for token in callback.aiter(): answer += token yield answer await task except asyncio.exceptions.CancelledError: logger.warning("streaming progress has been interrupted by user.") return return EventSourceResponse( completion_iterator( query=query, model_name=model_name, prompt_name=prompt_name ), )