import asyncio import multiprocessing as mp import os import requests import socket import sys from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed from pathlib import Path from urllib.parse import urlparse from typing import ( Any, Awaitable, Callable, Dict, Generator, List, Literal, Optional, Tuple, Union, ) import httpx import openai from fastapi import FastAPI from langchain.tools import BaseTool from langchain_core.embeddings import Embeddings from langchain_openai.chat_models import ChatOpenAI from langchain_openai.llms import OpenAI from memoization import cached, CachingAlgorithmFlag from chatchat.settings import Settings, XF_MODELS_TYPES from chatchat.server.pydantic_v2 import BaseModel, Field from chatchat.utils import build_logger import requests logger = build_logger() async def wrap_done(fn: Awaitable, event: asyncio.Event): """Wrap an awaitable with a event to signal when it's done or an exception is raised.""" try: await fn except Exception as e: msg = f"Caught exception: {e}" logger.error(f"{e.__class__.__name__}: {msg}") finally: # Signal the aiter to stop. event.set() def get_base_url(url): parsed_url = urlparse(url) # 解析url base_url = '{uri.scheme}://{uri.netloc}/'.format(uri=parsed_url) # 格式化基础url return base_url.rstrip('/') def get_config_platforms() -> Dict[str, Dict]: """ 获取配置的模型平台,会将 pydantic model 转换为字典。 """ platforms = [m.model_dump() for m in Settings.model_settings.MODEL_PLATFORMS] return {m["platform_name"]: m for m in platforms} @cached(max_size=10, ttl=60, algorithm=CachingAlgorithmFlag.LRU) def detect_xf_models(xf_url: str) -> Dict[str, List[str]]: ''' use cache for xinference model detecting to avoid: - too many requests in short intervals - multiple requests to one platform for every model the cache will be invalidated after one minute ''' xf_model_type_maps = { "llm_models": lambda xf_models: [k for k, v in xf_models.items() if "LLM" == v["model_type"] and "vision" not in v["model_ability"]], "embed_models": lambda xf_models: [k for k, v in xf_models.items() if "embedding" == v["model_type"]], "text2image_models": lambda xf_models: [k for k, v in xf_models.items() if "image" == v["model_type"]], "image2image_models": lambda xf_models: [k for k, v in xf_models.items() if "image" == v["model_type"]], "image2text_models": lambda xf_models: [k for k, v in xf_models.items() if "LLM" == v["model_type"] and "vision" in v["model_ability"]], "rerank_models": lambda xf_models: [k for k, v in xf_models.items() if "rerank" == v["model_type"]], "speech2text_models": lambda xf_models: [k for k, v in xf_models.items() if v.get(list(XF_MODELS_TYPES["speech2text"].keys())[0]) in XF_MODELS_TYPES["speech2text"].values()], "text2speech_models": lambda xf_models: [k for k, v in xf_models.items() if v.get(list(XF_MODELS_TYPES["text2speech"].keys())[0]) in XF_MODELS_TYPES["text2speech"].values()], } models = {} try: from xinference_client import RESTfulClient as Client xf_client = Client(xf_url) xf_models = xf_client.list_models() for m_type, filter in xf_model_type_maps.items(): models[m_type] = filter(xf_models) except ImportError: logger.warning('auto_detect_model needs xinference-client installed. ' 'Please try "pip install xinference-client". ') except requests.exceptions.ConnectionError: logger.warning(f"cannot connect to xinference host: {xf_url}, please check your configuration.") except Exception as e: logger.warning(f"error when connect to xinference server({xf_url}): {e}") return models def get_config_models( model_name: str = None, model_type: Optional[Literal[ "llm", "embed", "text2image", "image2image", "image2text", "rerank", "speech2text", "text2speech" ]] = None, platform_name: str = None, ) -> Dict[str, Dict]: """ 获取配置的模型列表,返回值为: {model_name: { "platform_name": xx, "platform_type": xx, "model_type": xx, "model_name": xx, "api_base_url": xx, "api_key": xx, "api_proxy": xx, }} """ result = {} if model_type is None: model_types = [ "llm_models", "embed_models", "text2image_models", "image2image_models", "image2text_models", "rerank_models", "speech2text_models", "text2speech_models", ] else: model_types = [f"{model_type}_models"] for m in list(get_config_platforms().values()): if platform_name is not None and platform_name != m.get("platform_name"): continue if m.get("auto_detect_model"): if not m.get("platform_type") == "xinference": # TODO:当前仅支持 xf 自动检测模型 logger.warning(f"auto_detect_model not supported for {m.get('platform_type')} yet") continue xf_url = get_base_url(m.get("api_base_url")) xf_models = detect_xf_models(xf_url) for m_type in model_types: # if m.get(m_type) != "auto": # continue m[m_type] = xf_models.get(m_type, []) for m_type in model_types: models = m.get(m_type, []) if models == "auto": logger.warning("you should not set `auto` without auto_detect_model=True") continue elif not models: continue for m_name in models: if model_name is None or model_name == m_name: result[m_name] = { "platform_name": m.get("platform_name"), "platform_type": m.get("platform_type"), "model_type": m_type.split("_")[0], "model_name": m_name, "api_base_url": m.get("api_base_url"), "api_key": m.get("api_key"), "api_proxy": m.get("api_proxy"), } return result def get_model_info( model_name: str = None, platform_name: str = None, multiple: bool = False ) -> Dict: """ 获取配置的模型信息,主要是 api_base_url, api_key 如果指定 multiple=True,则返回所有重名模型;否则仅返回第一个 """ result = get_config_models(model_name=model_name, platform_name=platform_name) if len(result) > 0: if multiple: return result else: return list(result.values())[0] else: return {} def get_default_llm(): available_llms = list(get_config_models(model_type="llm").keys()) if Settings.model_settings.DEFAULT_LLM_MODEL in available_llms: return Settings.model_settings.DEFAULT_LLM_MODEL else: logger.warning(f"default llm model {Settings.model_settings.DEFAULT_LLM_MODEL} is not found in available llms, " f"using {available_llms[0]} instead") return available_llms[0] def get_default_embedding(): available_embeddings = list(get_config_models(model_type="embed").keys()) if Settings.model_settings.DEFAULT_EMBEDDING_MODEL in available_embeddings: return Settings.model_settings.DEFAULT_EMBEDDING_MODEL else: logger.warning(f"default embedding model {Settings.model_settings.DEFAULT_EMBEDDING_MODEL} is not found in " f"available embeddings, using {available_embeddings[0]} instead") return available_embeddings[0] def get_ChatOpenAI( model_name: str = get_default_llm(), temperature: float = Settings.model_settings.TEMPERATURE, max_tokens: int = Settings.model_settings.MAX_TOKENS, streaming: bool = True, callbacks: List[Callable] = [], verbose: bool = True, local_wrap: bool = False, # use local wrapped api **kwargs: Any, ) -> ChatOpenAI: model_info = get_model_info(model_name) params = dict( streaming=streaming, verbose=verbose, callbacks=callbacks, model_name=model_name, temperature=temperature, max_tokens=max_tokens, **kwargs, ) # remove paramters with None value to avoid openai validation error for k in list(params): if params[k] is None: params.pop(k) try: if local_wrap: params.update( openai_api_base=f"{api_address()}/v1", openai_api_key="EMPTY", ) else: params.update( openai_api_base=model_info.get("api_base_url"), openai_api_key=model_info.get("api_key"), openai_proxy=model_info.get("api_proxy"), ) model = ChatOpenAI(**params) except Exception as e: logger.exception(f"failed to create ChatOpenAI for model: {model_name}.") model = None return model def get_OpenAI( model_name: str, temperature: float, max_tokens: int = Settings.model_settings.MAX_TOKENS, streaming: bool = True, echo: bool = True, callbacks: List[Callable] = [], verbose: bool = True, local_wrap: bool = False, # use local wrapped api **kwargs: Any, ) -> OpenAI: # TODO: 从API获取模型信息 model_info = get_model_info(model_name) params = dict( streaming=streaming, verbose=verbose, callbacks=callbacks, model_name=model_name, temperature=temperature, max_tokens=max_tokens, echo=echo, **kwargs, ) try: if local_wrap: params.update( openai_api_base=f"{api_address()}/v1", openai_api_key="EMPTY", ) else: params.update( openai_api_base=model_info.get("api_base_url"), openai_api_key=model_info.get("api_key"), openai_proxy=model_info.get("api_proxy"), ) model = OpenAI(**params) except Exception as e: logger.exception(f"failed to create OpenAI for model: {model_name}.") model = None return model def get_Embeddings( embed_model: str = None, local_wrap: bool = False, # use local wrapped api ) -> Embeddings: from langchain_community.embeddings import OllamaEmbeddings from langchain_openai import OpenAIEmbeddings from chatchat.server.localai_embeddings import ( LocalAIEmbeddings, ) embed_model = embed_model or get_default_embedding() model_info = get_model_info(model_name=embed_model) params = dict(model=embed_model) try: if local_wrap: params.update( openai_api_base=f"{api_address()}/v1", openai_api_key="EMPTY", ) else: params.update( openai_api_base=model_info.get("api_base_url"), openai_api_key=model_info.get("api_key"), openai_proxy=model_info.get("api_proxy"), ) if model_info.get("platform_type") == "openai": return OpenAIEmbeddings(**params) elif model_info.get("platform_type") == "ollama": return OllamaEmbeddings( base_url=model_info.get("api_base_url").replace("/v1", ""), model=embed_model, ) else: return LocalAIEmbeddings(**params) except Exception as e: logger.exception(f"failed to create Embeddings for model: {embed_model}.") def check_embed_model(embed_model: str = None) -> Tuple[bool, str]: ''' check weather embed_model accessable, use default embed model if None ''' embed_model = embed_model or get_default_embedding() embeddings = get_Embeddings(embed_model=embed_model) try: embeddings.embed_query("this is a test") return True, "" except Exception as e: msg = f"failed to access embed model '{embed_model}': {e}" logger.error(msg) return False, msg def get_OpenAIClient( platform_name: str = None, model_name: str = None, is_async: bool = True, ) -> Union[openai.Client, openai.AsyncClient]: """ construct an openai Client for specified platform or model """ if platform_name is None: platform_info = get_model_info( model_name=model_name, platform_name=platform_name ) if platform_info is None: raise RuntimeError( f"cannot find configured platform for model: {model_name}" ) platform_name = platform_info.get("platform_name") logger.info(f"platform_name:{platform_name}") platform_info = get_config_platforms().get(platform_name) assert platform_info, f"cannot find configured platform: {platform_name}" params = { "base_url": platform_info.get("api_base_url"), "api_key": platform_info.get("api_key"), } httpx_params = {} if api_proxy := platform_info.get("api_proxy"): httpx_params = { "proxies": api_proxy, "transport": httpx.HTTPTransport(local_address="0.0.0.0"), } if is_async: if httpx_params: params["http_client"] = httpx.AsyncClient(**httpx_params) return openai.AsyncClient(**params) else: if httpx_params: params["http_client"] = httpx.Client(**httpx_params) return openai.Client(**params) class MsgType: TEXT = 1 IMAGE = 2 AUDIO = 3 VIDEO = 4 class BaseResponse(BaseModel): code: int = Field(200, description="API status code") msg: str = Field("success", description="API status message") data: Any = Field(None, description="API data") class Config: json_schema_extra = { "example": { "code": 200, "msg": "success", } } class ListResponse(BaseResponse): data: List[Any] = Field(..., description="List of data") class Config: json_schema_extra = { "example": { "code": 200, "msg": "success", "data": ["doc1.docx", "doc2.pdf", "doc3.txt"], } } class ChatMessage(BaseModel): question: str = Field(..., description="Question text") response: str = Field(..., description="Response text") history: List[List[str]] = Field(..., description="History text") source_documents: List[str] = Field( ..., description="List of source documents and their scores" ) class Config: json_schema_extra = { "example": { "question": "工伤保险如何办理?", "response": "根据已知信息,可以总结如下:\n\n1. 参保单位为员工缴纳工伤保险费,以保障员工在发生工伤时能够获得相应的待遇。\n" "2. 不同地区的工伤保险缴费规定可能有所不同,需要向当地社保部门咨询以了解具体的缴费标准和规定。\n" "3. 工伤从业人员及其近亲属需要申请工伤认定,确认享受的待遇资格,并按时缴纳工伤保险费。\n" "4. 工伤保险待遇包括工伤医疗、康复、辅助器具配置费用、伤残待遇、工亡待遇、一次性工亡补助金等。\n" "5. 工伤保险待遇领取资格认证包括长期待遇领取人员认证和一次性待遇领取人员认证。\n" "6. 工伤保险基金支付的待遇项目包括工伤医疗待遇、康复待遇、辅助器具配置费用、一次性工亡补助金、丧葬补助金等。", "history": [ [ "工伤保险是什么?", "工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费," "由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。", ] ], "source_documents": [ "出处 [1] 广州市单位从业的特定人员参加工伤保险办事指引.docx:\n\n\t" "( 一) 从业单位 (组织) 按“自愿参保”原则, 为未建 立劳动关系的特定从业人员单项参加工伤保险 、缴纳工伤保 险费。", "出处 [2] ...", "出处 [3] ...", ], } } def run_async(cor): """ 在同步环境中运行异步代码. """ try: loop = asyncio.get_event_loop() except: loop = asyncio.new_event_loop() return loop.run_until_complete(cor) def iter_over_async(ait, loop=None): """ 将异步生成器封装成同步生成器. """ ait = ait.__aiter__() async def get_next(): try: obj = await ait.__anext__() return False, obj except StopAsyncIteration: return True, None if loop is None: try: loop = asyncio.get_event_loop() except: loop = asyncio.new_event_loop() while True: done, obj = loop.run_until_complete(get_next()) if done: break yield obj def MakeFastAPIOffline( app: FastAPI, static_dir=Path(__file__).parent / "api_server" / "static", static_url="/static-offline-docs", docs_url: Optional[str] = "/docs", redoc_url: Optional[str] = "/redoc", ) -> None: """patch the FastAPI obj that doesn't rely on CDN for the documentation page""" from fastapi import Request from fastapi.openapi.docs import ( get_redoc_html, get_swagger_ui_html, get_swagger_ui_oauth2_redirect_html, ) from fastapi.staticfiles import StaticFiles from starlette.responses import HTMLResponse openapi_url = app.openapi_url swagger_ui_oauth2_redirect_url = app.swagger_ui_oauth2_redirect_url def remove_route(url: str) -> None: """ remove original route from app """ index = None for i, r in enumerate(app.routes): if r.path.lower() == url.lower(): index = i break if isinstance(index, int): app.routes.pop(index) # Set up static file mount app.mount( static_url, StaticFiles(directory=Path(static_dir).as_posix()), name="static-offline-docs", ) if docs_url is not None: remove_route(docs_url) remove_route(swagger_ui_oauth2_redirect_url) # Define the doc and redoc pages, pointing at the right files @app.get(docs_url, include_in_schema=False) async def custom_swagger_ui_html(request: Request) -> HTMLResponse: root = request.scope.get("root_path") favicon = f"{root}{static_url}/favicon.png" return get_swagger_ui_html( openapi_url=f"{root}{openapi_url}", title=app.title + " - Swagger UI", oauth2_redirect_url=swagger_ui_oauth2_redirect_url, swagger_js_url=f"{root}{static_url}/swagger-ui-bundle.js", swagger_css_url=f"{root}{static_url}/swagger-ui.css", swagger_favicon_url=favicon, ) @app.get(swagger_ui_oauth2_redirect_url, include_in_schema=False) async def swagger_ui_redirect() -> HTMLResponse: return get_swagger_ui_oauth2_redirect_html() if redoc_url is not None: remove_route(redoc_url) @app.get(redoc_url, include_in_schema=False) async def redoc_html(request: Request) -> HTMLResponse: root = request.scope.get("root_path") favicon = f"{root}{static_url}/favicon.png" return get_redoc_html( openapi_url=f"{root}{openapi_url}", title=app.title + " - ReDoc", redoc_js_url=f"{root}{static_url}/redoc.standalone.js", with_google_fonts=False, redoc_favicon_url=favicon, ) # 从model_config中获取模型信息 # TODO: 移出模型加载后,这些功能需要删除或改变实现 # def list_embed_models() -> List[str]: # ''' # get names of configured embedding models # ''' # return list(MODEL_PATH["embed_model"]) # def get_model_path(model_name: str, type: str = None) -> Optional[str]: # if type in MODEL_PATH: # paths = MODEL_PATH[type] # else: # paths = {} # for v in MODEL_PATH.values(): # paths.update(v) # if path_str := paths.get(model_name): # 以 "chatglm-6b": "THUDM/chatglm-6b-new" 为例,以下都是支持的路径 # path = Path(path_str) # if path.is_dir(): # 任意绝对路径 # return str(path) # root_path = Path(MODEL_ROOT_PATH) # if root_path.is_dir(): # path = root_path / model_name # if path.is_dir(): # use key, {MODEL_ROOT_PATH}/chatglm-6b # return str(path) # path = root_path / path_str # if path.is_dir(): # use value, {MODEL_ROOT_PATH}/THUDM/chatglm-6b-new # return str(path) # path = root_path / path_str.split("/")[-1] # if path.is_dir(): # use value split by "/", {MODEL_ROOT_PATH}/chatglm-6b-new # return str(path) # return path_str # THUDM/chatglm06b def api_address(is_public: bool = False) -> str: ''' 允许用户在 basic_settings.API_SERVER 中配置 public_host, public_port 以便使用云服务器或反向代理时生成正确的公网 API 地址(如知识库文档下载链接) ''' from chatchat.settings import Settings server = Settings.basic_settings.API_SERVER if is_public: host = server.get("public_host", "127.0.0.1") port = server.get("public_port", "7861") else: host = server.get("host", "127.0.0.1") port = server.get("port", "7861") if host == "0.0.0.0": host = "127.0.0.1" return f"http://{host}:{port}" def webui_address() -> str: from chatchat.settings import Settings host = Settings.basic_settings.WEBUI_SERVER["host"] port = Settings.basic_settings.WEBUI_SERVER["port"] return f"http://{host}:{port}" def get_prompt_template(type: str, name: str) -> Optional[str]: """ 从prompt_config中加载模板内容 type: 对应于 model_settings.llm_model_config 模型类别其中的一种,以及 "rag",如果有新功能,应该进行加入。 """ from chatchat.settings import Settings return Settings.prompt_settings.model_dump().get(type, {}).get(name) def set_httpx_config( timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT, proxy: Union[str, Dict] = None, unused_proxies: List[str] = [], ): """ 设置httpx默认timeout。httpx默认timeout是5秒,在请求LLM回答时不够用。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) 对于chatgpt等在线API,如要使用代理需要手动配置。搜索引擎的代理如何处置还需考虑。 """ import os import httpx httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout # 在进程范围内设置系统级代理 proxies = {} if isinstance(proxy, str): for n in ["http", "https", "all"]: proxies[n + "_proxy"] = proxy elif isinstance(proxy, dict): for n in ["http", "https", "all"]: if p := proxy.get(n): proxies[n + "_proxy"] = p elif p := proxy.get(n + "_proxy"): proxies[n + "_proxy"] = p for k, v in proxies.items(): os.environ[k] = v # set host to bypass proxy no_proxy = [ x.strip() for x in os.environ.get("no_proxy", "").split(",") if x.strip() ] no_proxy += [ # do not use proxy for locahost "http://127.0.0.1", "http://localhost", ] # do not use proxy for user deployed fastchat servers for x in unused_proxies: host = ":".join(x.split(":")[:2]) if host not in no_proxy: no_proxy.append(host) os.environ["NO_PROXY"] = ",".join(no_proxy) def _get_proxies(): return proxies import urllib.request urllib.request.getproxies = _get_proxies def run_in_thread_pool( func: Callable, params: List[Dict] = [], ) -> Generator: """ 在线程池中批量运行任务,并将运行结果以生成器的形式返回。 请确保任务中的所有操作是线程安全的,任务函数请全部使用关键字参数。 """ tasks = [] with ThreadPoolExecutor() as pool: for kwargs in params: tasks.append(pool.submit(func, **kwargs)) for obj in as_completed(tasks): try: yield obj.result() except Exception as e: logger.exception(f"error in sub thread: {e}") def run_in_process_pool( func: Callable, params: List[Dict] = [], ) -> Generator: """ 在线程池中批量运行任务,并将运行结果以生成器的形式返回。 请确保任务中的所有操作是线程安全的,任务函数请全部使用关键字参数。 """ tasks = [] max_workers = None if sys.platform.startswith("win"): max_workers = min( mp.cpu_count(), 60 ) # max_workers should not exceed 60 on windows with ProcessPoolExecutor(max_workers=max_workers) as pool: for kwargs in params: tasks.append(pool.submit(func, **kwargs)) for obj in as_completed(tasks): try: yield obj.result() except Exception as e: logger.exception(f"error in sub process: {e}") def get_httpx_client( use_async: bool = False, proxies: Union[str, Dict] = None, timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT, unused_proxies: List[str] = [], **kwargs, ) -> Union[httpx.Client, httpx.AsyncClient]: """ helper to get httpx client with default proxies that bypass local addesses. """ default_proxies = { # do not use proxy for locahost "all://127.0.0.1": None, "all://localhost": None, } # do not use proxy for user deployed fastchat servers for x in unused_proxies: host = ":".join(x.split(":")[:2]) default_proxies.update({host: None}) # get proxies from system envionrent # proxy not str empty string, None, False, 0, [] or {} default_proxies.update( { "http://": ( os.environ.get("http_proxy") if os.environ.get("http_proxy") and len(os.environ.get("http_proxy").strip()) else None ), "https://": ( os.environ.get("https_proxy") if os.environ.get("https_proxy") and len(os.environ.get("https_proxy").strip()) else None ), "all://": ( os.environ.get("all_proxy") if os.environ.get("all_proxy") and len(os.environ.get("all_proxy").strip()) else None ), } ) for host in os.environ.get("no_proxy", "").split(","): if host := host.strip(): # default_proxies.update({host: None}) # Origin code default_proxies.update( {"all://" + host: None} ) # PR 1838 fix, if not add 'all://', httpx will raise error # merge default proxies with user provided proxies if isinstance(proxies, str): proxies = {"all://": proxies} if isinstance(proxies, dict): default_proxies.update(proxies) # construct Client kwargs.update(timeout=timeout, proxies=default_proxies) if use_async: return httpx.AsyncClient(**kwargs) else: return httpx.Client(**kwargs) def get_server_configs() -> Dict: """ 获取configs中的原始配置项,供前端使用 """ _custom = { "api_address": api_address(), } return {**{k: v for k, v in locals().items() if k[0] != "_"}, **_custom} def get_temp_dir(id: str = None) -> Tuple[str, str]: """ 创建一个临时目录,返回(路径,文件夹名称) """ import uuid from chatchat.settings import Settings if id is not None: # 如果指定的临时目录已存在,直接返回 path = os.path.join(Settings.basic_settings.BASE_TEMP_DIR, id) if os.path.isdir(path): return path, id id = uuid.uuid4().hex path = os.path.join(Settings.basic_settings.BASE_TEMP_DIR, id) os.mkdir(path) return path, id # 动态更新知识库信息 def update_search_local_knowledgebase_tool(): import re from chatchat.server.agent.tools_factory import tools_registry from chatchat.server.db.repository.knowledge_base_repository import list_kbs_from_db kbs = list_kbs_from_db() #template = "Use local knowledgebase from one or more of these:\n{KB_info}\n to get information,Only local data on this knowledge use this tool. The 'database' should be one of the above [{key}]." template = "使用本地知识库里\n{KB_info}\n去查1)国家电网各部门规章制度、安全生产、合同管控等 2)安徽送变电规章制度、安全生产、合同管控等 3)国网基建数字化管理 4)国网输变电工程管理等相关的问题时,只有当用户的问题在本地知识库里时才使用这个工具查询.'database' 应该是上面的 [{key}] 之一" KB_info_str = "\n".join([f"{kb.kb_name}: {kb.kb_info}" for kb in kbs]) KB_name_info_str = "\n".join([f"{kb.kb_name}" for kb in kbs]) template_knowledge = template.format(KB_info=KB_info_str, key=KB_name_info_str) search_local_knowledgebase_tool = tools_registry._TOOLS_REGISTRY.get( "search_local_knowledgebase" ) if search_local_knowledgebase_tool: search_local_knowledgebase_tool.description = " ".join( re.split(r"\n+\s*", template_knowledge) ) search_local_knowledgebase_tool.args["database"]["choices"] = [ kb.kb_name for kb in kbs ] def get_tool(name: str = None) -> Union[BaseTool, Dict[str, BaseTool]]: import importlib from chatchat.server.agent import tools_factory importlib.reload(tools_factory) from chatchat.server.agent.tools_factory import tools_registry update_search_local_knowledgebase_tool() if name is None: return tools_registry._TOOLS_REGISTRY else: return tools_registry._TOOLS_REGISTRY.get(name) def get_tool_config(name: str = None) -> Dict: from chatchat.settings import Settings if name is None: return Settings.tool_settings.model_dump() else: return Settings.tool_settings.model_dump().get(name, {}) def is_port_in_use(port): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: return sock.connect_ex(("localhost", port)) == 0 if __name__ == "__main__": # for debug print(get_default_llm()) print(get_default_embedding()) platforms = get_config_platforms() models = get_config_models() model_info = get_model_info(platform_name="xinference-auto") print(1)