import base64 import hashlib import io import os import uuid from datetime import datetime from PIL import Image as PILImage from typing import Dict, List from urllib.parse import urlencode # from audio_recorder_streamlit import audio_recorder import openai import streamlit as st import streamlit_antd_components as sac from streamlit_chatbox import * from streamlit_extras.bottom_container import bottom from streamlit_paste_button import paste_image_button from chatchat.settings import Settings from chatchat.server.callback_handler.agent_callback_handler import AgentStatus from chatchat.server.knowledge_base.model.kb_document_model import DocumentWithVSId from chatchat.server.knowledge_base.utils import format_reference from chatchat.server.utils import MsgType, get_config_models, get_config_platforms, get_default_llm from chatchat.webui_pages.utils import * chat_box = ChatBox(assistant_avatar=get_img_base64("chatchat_icon_blue_square_v2.png")) def save_session(conv_name: str = None): """save session state to chat context""" chat_box.context_from_session( conv_name, exclude=["selected_page", "prompt", "cur_conv_name", "upload_image"] ) def restore_session(conv_name: str = None): """restore sesstion state from chat context""" chat_box.context_to_session( conv_name, exclude=["selected_page", "prompt", "cur_conv_name", "upload_image"] ) def rerun(): """ save chat context before rerun """ save_session() st.rerun() def get_messages_history( history_len: int, content_in_expander: bool = False ) -> List[Dict]: """ 返回消息历史。 content_in_expander控制是否返回expander元素中的内容,一般导出的时候可以选上,传入LLM的history不需要 """ def filter(msg): content = [ x for x in msg["elements"] if x._output_method in ["markdown", "text"] ] if not content_in_expander: content = [x for x in content if not x._in_expander] content = [x.content for x in content] return { "role": msg["role"], "content": "\n\n".join(content), } messages = chat_box.filter_history(history_len=history_len, filter=filter) if sys_msg := chat_box.context.get("system_message"): messages = [{"role": "system", "content": sys_msg}] + messages return messages @st.cache_data def upload_temp_docs(files, _api: ApiRequest) -> str: """ 将文件上传到临时目录,用于文件对话 返回临时向量库ID """ return _api.upload_temp_docs(files).get("data", {}).get("id") @st.cache_data def upload_image_file(file_name: str, content: bytes) -> dict: '''upload image for vision model using openai sdk''' client = openai.Client(base_url=f"{api_address()}/v1", api_key="NONE") return client.files.create(file=(file_name, content), purpose="assistants").to_dict() def get_image_file_url(upload_file: dict) -> str: file_id = upload_file.get("id") return f"{api_address(True)}/v1/files/{file_id}/content" def add_conv(name: str = ""): conv_names = chat_box.get_chat_names() if not name: i = len(conv_names) + 1 while True: name = f"会话{i}" if name not in conv_names: break i += 1 if name in conv_names: sac.alert( "创建新会话出错", f"该会话名称 “{name}” 已存在", color="error", closable=True, ) else: chat_box.use_chat_name(name) st.session_state["cur_conv_name"] = name def del_conv(name: str = None): conv_names = chat_box.get_chat_names() name = name or chat_box.cur_chat_name if len(conv_names) == 1: sac.alert( "删除会话出错", f"这是最后一个会话,无法删除", color="error", closable=True ) elif not name or name not in conv_names: sac.alert( "删除会话出错", f"无效的会话名称:“{name}”", color="error", closable=True ) else: chat_box.del_chat_name(name) # restore_session() st.session_state["cur_conv_name"] = chat_box.cur_chat_name def clear_conv(name: str = None): chat_box.reset_history(name=name or None) # @st.cache_data def list_tools(_api: ApiRequest): return _api.list_tools() or {} def dialogue_page( api: ApiRequest, is_lite: bool = False, ): ctx = chat_box.context ctx.setdefault("uid", uuid.uuid4().hex) ctx.setdefault("file_chat_id", None) ctx.setdefault("llm_model", get_default_llm()) ctx.setdefault("temperature", Settings.model_settings.TEMPERATURE) st.session_state.setdefault("cur_conv_name", chat_box.cur_chat_name) st.session_state.setdefault("last_conv_name", chat_box.cur_chat_name) # sac on_change callbacks not working since st>=1.34 if st.session_state.cur_conv_name != st.session_state.last_conv_name: save_session(st.session_state.last_conv_name) restore_session(st.session_state.cur_conv_name) st.session_state.last_conv_name = st.session_state.cur_conv_name # st.write(chat_box.cur_chat_name) # st.write(st.session_state) # st.write(chat_box.context) @st.experimental_dialog("模型配置", width="large") def llm_model_setting(): # 模型 cols = st.columns(3) platforms = ["所有"] + list(get_config_platforms()) platform = cols[0].selectbox("选择模型平台", platforms, key="platform") llm_models = list( get_config_models( model_type="llm", platform_name=None if platform == "所有" else platform ) ) llm_models += list( get_config_models( model_type="image2text", platform_name=None if platform == "所有" else platform ) ) llm_model = cols[1].selectbox("选择LLM模型", llm_models, key="llm_model") temperature = cols[2].slider("Temperature", 0.0, 1.0, key="temperature") system_message = st.text_area("System Message:", key="system_message") if st.button("OK"): rerun() @st.experimental_dialog("重命名会话") def rename_conversation(): name = st.text_input("会话名称") if st.button("OK"): chat_box.change_chat_name(name) restore_session() st.session_state["cur_conv_name"] = name rerun() with st.sidebar: tab1, tab2 = st.tabs(["工具设置", "会话设置"]) with tab1: use_agent = st.checkbox( "启用Agent", help="请确保选择的模型具备Agent能力", key="use_agent" ) output_agent = st.checkbox("显示 Agent 过程", key="output_agent") # 选择工具 tools = list_tools(api) tool_names = ["None"] + list(tools) if use_agent: # selected_tools = sac.checkbox(list(tools), format_func=lambda x: tools[x]["title"], label="选择工具", # check_all=True, key="selected_tools") selected_tools = st.multiselect( "选择工具", list(tools), format_func=lambda x: tools[x]["title"], key="selected_tools", ) else: # selected_tool = sac.buttons(list(tools), format_func=lambda x: tools[x]["title"], label="选择工具", # key="selected_tool") selected_tool = st.selectbox( "选择工具", tool_names, format_func=lambda x: tools.get(x, {"title": "None"})["title"], key="selected_tool", ) selected_tools = [selected_tool] selected_tool_configs = { name: tool["config"] for name, tool in tools.items() if name in selected_tools } if "None" in selected_tools: selected_tools.remove("None") # 当不启用Agent时,手动生成工具参数 # TODO: 需要更精细的控制控件 tool_input = {} if not use_agent and len(selected_tools) == 1: with st.expander("工具参数", True): for k, v in tools[selected_tools[0]]["args"].items(): if choices := v.get("choices", v.get("enum")): tool_input[k] = st.selectbox(v["title"], choices) else: if v["type"] == "integer": tool_input[k] = st.slider( v["title"], value=v.get("default") ) elif v["type"] == "number": tool_input[k] = st.slider( v["title"], value=v.get("default"), step=0.1 ) else: tool_input[k] = st.text_input( v["title"], v.get("default") ) # uploaded_file = st.file_uploader("上传附件", accept_multiple_files=False) # files_upload = process_files(files=[uploaded_file]) if uploaded_file else None files_upload = None # 用于图片对话、文生图的图片 upload_image = None def on_upload_file_change(): if f := st.session_state.get("upload_image"): name = ".".join(f.name.split(".")[:-1]) + ".png" st.session_state["cur_image"] = (name, PILImage.open(f)) else: st.session_state["cur_image"] = (None, None) st.session_state.pop("paste_image", None) st.file_uploader("上传图片", ["bmp", "jpg", "jpeg", "png"], accept_multiple_files=False, key="upload_image", on_change=on_upload_file_change) paste_image = paste_image_button("黏贴图像", key="paste_image") cur_image = st.session_state.get("cur_image", (None, None)) if cur_image[1] is None and paste_image.image_data is not None: name = hashlib.md5(paste_image.image_data.tobytes()).hexdigest()+".png" cur_image = (name, paste_image.image_data) if cur_image[1] is not None: st.image(cur_image[1]) buffer = io.BytesIO() cur_image[1].save(buffer, format="png") upload_image = upload_image_file(cur_image[0], buffer.getvalue()) with tab2: # 会话 cols = st.columns(3) conv_names = chat_box.get_chat_names() def on_conv_change(): print(conversation_name, st.session_state.cur_conv_name) save_session(conversation_name) restore_session(st.session_state.cur_conv_name) conversation_name = sac.buttons( conv_names, label="当前会话:", key="cur_conv_name", # on_change=on_conv_change, # not work ) chat_box.use_chat_name(conversation_name) conversation_id = chat_box.context["uid"] if cols[0].button("新建", on_click=add_conv): ... if cols[1].button("重命名"): rename_conversation() if cols[2].button("删除", on_click=del_conv): ... # Display chat messages from history on app rerun chat_box.output_messages() chat_input_placeholder = "请输入对话内容,换行请使用Shift+Enter。" # def on_feedback( # feedback, # message_id: str = "", # history_index: int = -1, # ): # reason = feedback["text"] # score_int = chat_box.set_feedback(feedback=feedback, history_index=history_index) # api.chat_feedback(message_id=message_id, # score=score_int, # reason=reason) # st.session_state["need_rerun"] = True # feedback_kwargs = { # "feedback_type": "thumbs", # "optional_text_label": "欢迎反馈您打分的理由", # } # TODO: 这里的内容有点奇怪,从后端导入Settings.model_settings.LLM_MODEL_CONFIG,然后又从前端传到后端。需要优化 # 传入后端的内容 llm_model_config = Settings.model_settings.LLM_MODEL_CONFIG chat_model_config = {key: {} for key in llm_model_config.keys()} for key in llm_model_config: if c := llm_model_config[key]: model = c.get("model", "").strip() or get_default_llm() chat_model_config[key][model] = llm_model_config[key] llm_model = ctx.get("llm_model") if llm_model is not None: chat_model_config["llm_model"][llm_model] = llm_model_config["llm_model"].get( llm_model, {} ) # chat input with bottom(): cols = st.columns([1, 0.2, 15, 1]) if cols[0].button(":gear:", help="模型配置"): widget_keys = ["platform", "llm_model", "temperature", "system_message"] chat_box.context_to_session(include=widget_keys) llm_model_setting() if cols[-1].button(":wastebasket:", help="清空对话"): chat_box.reset_history() rerun() # with cols[1]: # mic_audio = audio_recorder("", icon_size="2x", key="mic_audio") prompt = cols[2].chat_input(chat_input_placeholder, key="prompt") if prompt: history = get_messages_history( chat_model_config["llm_model"] .get(next(iter(chat_model_config["llm_model"])), {}) .get("history_len", 1) ) is_vision_chat = upload_image and not selected_tools if is_vision_chat: # multimodal chat chat_box.user_say([Image(get_image_file_url(upload_image), width=100), Markdown(prompt)]) else: chat_box.user_say(prompt) if files_upload: if files_upload["images"]: st.markdown( f'', unsafe_allow_html=True, ) elif files_upload["videos"]: st.markdown( f'', unsafe_allow_html=True, ) elif files_upload["audios"]: st.markdown( f'', unsafe_allow_html=True, ) chat_box.ai_say("正在思考...") text = "" started = False client = openai.Client(base_url=f"{api_address()}/chat", api_key="NONE") if is_vision_chat: # multimodal chat content = [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": get_image_file_url(upload_image)}} ] messages = [{"role": "user", "content": content}] else: messages = history + [{"role": "user", "content": prompt}] tools = list(selected_tool_configs) if len(selected_tools) == 1: tool_choice = selected_tools[0] else: tool_choice = None # 如果 tool_input 中有空的字段,设为用户输入 for k in tool_input: if tool_input[k] in [None, ""]: tool_input[k] = prompt extra_body = dict( metadata=files_upload, chat_model_config=chat_model_config, conversation_id=conversation_id, tool_input=tool_input, upload_image=upload_image, ) stream = not is_vision_chat params = dict( messages=messages, model=llm_model, stream=stream, # TODO:xinference qwen-vl-chat 流式输出会出错,后续看更新 extra_body=extra_body, ) if tools: params["tools"] = tools if tool_choice: params["tool_choice"] = tool_choice if Settings.model_settings.MAX_TOKENS: params["max_tokens"] = Settings.model_settings.MAX_TOKENS if stream: try: for d in client.chat.completions.create(**params): # import rich # rich.print(d) message_id = d.message_id metadata = { "message_id": message_id, } # clear initial message if not started: chat_box.update_msg("", streaming=False) started = True if d.status == AgentStatus.error: st.error(d.choices[0].delta.content) elif d.status == AgentStatus.llm_start: if not output_agent: continue chat_box.insert_msg("正在解读工具输出结果...") text = d.choices[0].delta.content or "" elif d.status == AgentStatus.llm_new_token: if not output_agent: continue text += d.choices[0].delta.content or "" chat_box.update_msg( text.replace("\n", "\n\n"), streaming=True, metadata=metadata ) elif d.status == AgentStatus.llm_end: if not output_agent: continue text += d.choices[0].delta.content or "" chat_box.update_msg( text.replace("\n", "\n\n"), streaming=False, metadata=metadata ) # tool 的输出与 llm 输出重复了 # elif d.status == AgentStatus.tool_start: # formatted_data = { # "Function": d.choices[0].delta.tool_calls[0].function.name, # "function_input": d.choices[0].delta.tool_calls[0].function.arguments, # } # formatted_json = json.dumps(formatted_data, indent=2, ensure_ascii=False) # text = """\n```{}\n```\n""".format(formatted_json) # chat_box.insert_msg( # TODO: insert text directly not shown # Markdown(text, title="Function call", in_expander=True, expanded=True, state="running")) # elif d.status == AgentStatus.tool_end: # tool_output = d.choices[0].delta.tool_calls[0].tool_output # if d.message_type == MsgType.IMAGE: # for url in json.loads(tool_output).get("images", []): # url = f"{api.base_url}/media/{url}" # chat_box.insert_msg(Image(url)) # chat_box.update_msg(expanded=False, state="complete") # else: # text += """\n```\nObservation:\n{}\n```\n""".format(tool_output) # chat_box.update_msg(text, streaming=False, expanded=False, state="complete") elif d.status == AgentStatus.agent_finish: text = d.choices[0].delta.content or "" chat_box.update_msg(text.replace("\n", "\n\n")) elif d.status is None: # not agent chat if getattr(d, "is_ref", False): context = str(d.tool_output) if isinstance(d.tool_output, dict): docs = d.tool_output.get("docs", []) source_documents = format_reference(kb_name=d.tool_output.get("knowledge_base"), docs=docs, api_base_url=api_address(is_public=True)) context = "\n".join(source_documents) chat_box.insert_msg( Markdown( context, in_expander=True, state="complete", title="参考资料", ) ) chat_box.insert_msg("") elif getattr(d, "tool_call", None) == "text2images": # TODO:特定工具特别处理,需要更通用的处理方式 for img in d.tool_output.get("images", []): chat_box.insert_msg(Image(f"{api.base_url}/media/{img}"), pos=-2) else: text += d.choices[0].delta.content or "" chat_box.update_msg( text.replace("\n", "\n\n"), streaming=True, metadata=metadata ) chat_box.update_msg(text, streaming=False, metadata=metadata) except Exception as e: st.error(e.body) else: try: d =client.chat.completions.create(**params) chat_box.update_msg(d.choices[0].message.content or "", streaming=False) except Exception as e: st.error(e.body) # if os.path.exists("tmp/image.jpg"): # with open("tmp/image.jpg", "rb") as image_file: # encoded_string = base64.b64encode(image_file.read()).decode() # img_tag = ( # f'' # ) # st.markdown(img_tag, unsafe_allow_html=True) # os.remove("tmp/image.jpg") # chat_box.show_feedback(**feedback_kwargs, # key=message_id, # on_submit=on_feedback, # kwargs={"message_id": message_id, "history_index": len(chat_box.history) - 1}) # elif dialogue_mode == "文件对话": # if st.session_state["file_chat_id"] is None: # st.error("请先上传文件再进行对话") # st.stop() # chat_box.ai_say([ # f"正在查询文件 `{st.session_state['file_chat_id']}` ...", # Markdown("...", in_expander=True, title="文件匹配结果", state="complete"), # ]) # text = "" # for d in api.file_chat(prompt, # knowledge_id=st.session_state["file_chat_id"], # top_k=kb_top_k, # score_threshold=score_threshold, # history=history, # model=llm_model, # prompt_name=prompt_template_name, # temperature=temperature): # if error_msg := check_error_msg(d): # st.error(error_msg) # elif chunk := d.get("answer"): # text += chunk # chat_box.update_msg(text, element_index=0) # chat_box.update_msg(text, element_index=0, streaming=False) # chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False) now = datetime.now() with tab2: cols = st.columns(2) export_btn = cols[0] if cols[1].button( "清空对话", use_container_width=True, ): chat_box.reset_history() rerun() export_btn.download_button( "导出记录", "".join(chat_box.export2md()), file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md", mime="text/markdown", use_container_width=True, ) # st.write(chat_box.history)