83 lines
3.1 KiB
Python
83 lines
3.1 KiB
Python
import asyncio
|
||
from typing import AsyncIterable, Optional
|
||
|
||
from fastapi import Body
|
||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
from langchain.chains import LLMChain
|
||
from langchain.prompts import PromptTemplate
|
||
from sse_starlette.sse import EventSourceResponse
|
||
|
||
from chatchat.server.utils import get_OpenAI, get_prompt_template, wrap_done, build_logger
|
||
|
||
|
||
logger = build_logger()
|
||
|
||
|
||
async def completion(
|
||
query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
|
||
stream: bool = Body(False, description="流式输出"),
|
||
echo: bool = Body(False, description="除了输出之外,还回显输入"),
|
||
model_name: str = Body(None, description="LLM 模型名称。"),
|
||
temperature: float = Body(0.01, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: Optional[int] = Body(
|
||
1024, description="限制LLM生成Token数量,默认None代表模型最大值"
|
||
),
|
||
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
|
||
prompt_name: str = Body(
|
||
"default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
|
||
),
|
||
):
|
||
# TODO: 因ApiModelWorker 默认是按chat处理的,会对params["prompt"] 解析为messages,因此ApiModelWorker 使用时需要有相应处理
|
||
async def completion_iterator(
|
||
query: str,
|
||
model_name: str = None,
|
||
prompt_name: str = prompt_name,
|
||
echo: bool = echo,
|
||
) -> AsyncIterable[str]:
|
||
try:
|
||
nonlocal max_tokens
|
||
callback = AsyncIteratorCallbackHandler()
|
||
if isinstance(max_tokens, int) and max_tokens <= 0:
|
||
max_tokens = None
|
||
|
||
logger.info(f"model_name:{model_name, prompt_name:{prompt_name}, echo:{echo}}")
|
||
model = get_OpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
callbacks=[callback],
|
||
echo=echo,
|
||
local_wrap=True,
|
||
)
|
||
|
||
prompt_template = get_prompt_template("llm_model", prompt_name)
|
||
prompt = PromptTemplate.from_template(prompt_template, template_format="jinja2")
|
||
logger.info(f"prompt_template:{prompt}")
|
||
chain = LLMChain(prompt=prompt, llm=model)
|
||
|
||
# Begin a task that runs in the background.
|
||
task = asyncio.create_task(
|
||
wrap_done(chain.acall({"input": query}), callback.done),
|
||
)
|
||
|
||
if stream:
|
||
async for token in callback.aiter():
|
||
# Use server-sent-events to stream the response
|
||
yield token
|
||
else:
|
||
answer = ""
|
||
async for token in callback.aiter():
|
||
answer += token
|
||
yield answer
|
||
|
||
await task
|
||
except asyncio.exceptions.CancelledError:
|
||
logger.warning("streaming progress has been interrupted by user.")
|
||
return
|
||
|
||
return EventSourceResponse(
|
||
completion_iterator(
|
||
query=query, model_name=model_name, prompt_name=prompt_name
|
||
),
|
||
)
|