781 lines
25 KiB
Python
781 lines
25 KiB
Python
# 该文件封装了对api.py的请求,可以被不同的webui使用
|
||
# 通过ApiRequest和AsyncApiRequest支持同步/异步调用
|
||
|
||
import base64
|
||
import contextlib
|
||
import json
|
||
import logging
|
||
import os
|
||
from io import BytesIO
|
||
from pathlib import Path
|
||
from typing import *
|
||
|
||
import httpx
|
||
|
||
from chatchat.settings import Settings
|
||
from chatchat.server.utils import api_address, get_httpx_client, set_httpx_config, get_default_embedding
|
||
from chatchat.utils import build_logger
|
||
|
||
|
||
logger = build_logger()
|
||
|
||
set_httpx_config()
|
||
|
||
|
||
class ApiRequest:
|
||
"""
|
||
api.py调用的封装(同步模式),简化api调用方式
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
base_url: str = api_address(),
|
||
timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT,
|
||
):
|
||
self.base_url = base_url
|
||
self.timeout = timeout
|
||
self._use_async = False
|
||
self._client = None
|
||
|
||
@property
|
||
def client(self):
|
||
if self._client is None or self._client.is_closed:
|
||
self._client = get_httpx_client(
|
||
base_url=self.base_url, use_async=self._use_async, timeout=self.timeout
|
||
)
|
||
return self._client
|
||
|
||
def get(
|
||
self,
|
||
url: str,
|
||
params: Union[Dict, List[Tuple], bytes] = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream("GET", url, params=params, **kwargs)
|
||
else:
|
||
return self.client.get(url, params=params, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when get {url}: {e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
retry -= 1
|
||
|
||
def post(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
# print(kwargs)
|
||
if stream:
|
||
return self.client.stream(
|
||
"POST", url, data=data, json=json, **kwargs
|
||
)
|
||
else:
|
||
return self.client.post(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when post {url}: {e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
retry -= 1
|
||
|
||
def delete(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream(
|
||
"DELETE", url, data=data, json=json, **kwargs
|
||
)
|
||
else:
|
||
return self.client.delete(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when delete {url}: {e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
retry -= 1
|
||
|
||
def _httpx_stream2generator(
|
||
self,
|
||
response: contextlib._GeneratorContextManager,
|
||
as_json: bool = False,
|
||
):
|
||
"""
|
||
将httpx.stream返回的GeneratorContextManager转化为普通生成器
|
||
"""
|
||
|
||
async def ret_async(response, as_json):
|
||
try:
|
||
async with response as r:
|
||
chunk_cache = ""
|
||
async for chunk in r.aiter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk_cache + chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk_cache + chunk)
|
||
|
||
chunk_cache = ""
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
|
||
if chunk.startswith("data: "):
|
||
chunk_cache += chunk[6:-2]
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
chunk_cache += chunk
|
||
continue
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
def ret_sync(response, as_json):
|
||
try:
|
||
with response as r:
|
||
chunk_cache = ""
|
||
for chunk in r.iter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk_cache + chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk_cache + chunk)
|
||
|
||
chunk_cache = ""
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
|
||
if chunk.startswith("data: "):
|
||
chunk_cache += chunk[6:-2]
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
chunk_cache += chunk
|
||
continue
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
if self._use_async:
|
||
return ret_async(response, as_json)
|
||
else:
|
||
return ret_sync(response, as_json)
|
||
|
||
def _get_response_value(
|
||
self,
|
||
response: httpx.Response,
|
||
as_json: bool = False,
|
||
value_func: Callable = None,
|
||
):
|
||
"""
|
||
转换同步或异步请求返回的响应
|
||
`as_json`: 返回json
|
||
`value_func`: 用户可以自定义返回值,该函数接受response或json
|
||
"""
|
||
|
||
def to_json(r):
|
||
try:
|
||
return r.json()
|
||
except Exception as e:
|
||
msg = "API未能返回正确的JSON。" + str(e)
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
return {"code": 500, "msg": msg, "data": None}
|
||
|
||
if value_func is None:
|
||
value_func = lambda r: r
|
||
|
||
async def ret_async(response):
|
||
if as_json:
|
||
return value_func(to_json(await response))
|
||
else:
|
||
return value_func(await response)
|
||
|
||
if self._use_async:
|
||
return ret_async(response)
|
||
else:
|
||
if as_json:
|
||
return value_func(to_json(response))
|
||
else:
|
||
return value_func(response)
|
||
|
||
# 服务器信息
|
||
def get_server_configs(self, **kwargs) -> Dict:
|
||
response = self.post("/server/configs", **kwargs)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def get_prompt_template(
|
||
self,
|
||
type: str = "llm_chat",
|
||
name: str = "default",
|
||
**kwargs,
|
||
) -> str:
|
||
data = {
|
||
"type": type,
|
||
"name": name,
|
||
}
|
||
response = self.post("/server/get_prompt_template", json=data, **kwargs)
|
||
return self._get_response_value(response, value_func=lambda r: r.text)
|
||
|
||
#LLM对话
|
||
def chat_completion(
|
||
self,
|
||
query: str,
|
||
conversation_id: str = None,
|
||
history_len: int = -1,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = Settings.model_settings.DEFAULT_LLM_MODEL,
|
||
temperature: float = 0.6,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
**kwargs,
|
||
):
|
||
'''
|
||
对应api.py/chat/completion接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"conversation_id": conversation_id,
|
||
"history_len": history_len,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
logger.info(f"chat_completion:/chat/llm_chat")
|
||
response = self.post("/chat/llm_chat", json=data, stream=True, **kwargs)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# 对话相关操作
|
||
def chat_chat(
|
||
self,
|
||
query: str,
|
||
metadata: dict,
|
||
conversation_id: str = None,
|
||
history_len: int = -1,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
chat_model_config: Dict = None,
|
||
tool_config: Dict = None,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
对应api.py/chat/chat接口
|
||
"""
|
||
data = {
|
||
"query": query,
|
||
"metadata": metadata,
|
||
"conversation_id": conversation_id,
|
||
"history_len": history_len,
|
||
"history": history,
|
||
"stream": stream,
|
||
"chat_model_config": chat_model_config,
|
||
"tool_config": tool_config,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post("/chat/chat", json=data, stream=True, **kwargs)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def upload_temp_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_id: str = None,
|
||
chunk_size=Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap=Settings.kb_settings.OVERLAP_SIZE,
|
||
zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/upload_temp_docs接口
|
||
"""
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_id": knowledge_id,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/upload_temp_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def file_chat(
|
||
self,
|
||
query: str,
|
||
knowledge_id: str,
|
||
top_k: int = Settings.kb_settings.VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = Settings.kb_settings.SCORE_THRESHOLD,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = None,
|
||
temperature: float = 0.9,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
):
|
||
"""
|
||
对应api.py/chat/file_chat接口
|
||
"""
|
||
data = {
|
||
"query": query,
|
||
"knowledge_id": knowledge_id,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
response = self.post(
|
||
"/chat/file_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# 知识库相关操作
|
||
|
||
def list_knowledge_bases(
|
||
self,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/list_knowledge_bases接口
|
||
"""
|
||
response = self.get("/knowledge_base/list_knowledge_bases")
|
||
return self._get_response_value(
|
||
response, as_json=True, value_func=lambda r: r.get("data", [])
|
||
)
|
||
|
||
def create_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
vector_store_type: str = Settings.kb_settings.DEFAULT_VS_TYPE,
|
||
embed_model: str = get_default_embedding(),
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/create_knowledge_base接口
|
||
"""
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"vector_store_type": vector_store_type,
|
||
"embed_model": embed_model,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/create_knowledge_base",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/delete_knowledge_base接口
|
||
"""
|
||
response = self.post(
|
||
"/knowledge_base/delete_knowledge_base",
|
||
json=f"{knowledge_base_name}",
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def list_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/list_files接口
|
||
"""
|
||
response = self.get(
|
||
"/knowledge_base/list_files",
|
||
params={"knowledge_base_name": knowledge_base_name},
|
||
)
|
||
return self._get_response_value(
|
||
response, as_json=True, value_func=lambda r: r.get("data", [])
|
||
)
|
||
|
||
def search_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
query: str = "",
|
||
top_k: int = Settings.kb_settings.VECTOR_SEARCH_TOP_K,
|
||
score_threshold: int = Settings.kb_settings.SCORE_THRESHOLD,
|
||
file_name: str = "",
|
||
metadata: dict = {},
|
||
) -> List:
|
||
"""
|
||
对应api.py/knowledge_base/search_docs接口
|
||
"""
|
||
data = {
|
||
"query": query,
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"file_name": file_name,
|
||
"metadata": metadata,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/search_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def upload_kb_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_base_name: str,
|
||
override: bool = False,
|
||
to_vector_store: bool = True,
|
||
chunk_size=Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap=Settings.kb_settings.OVERLAP_SIZE,
|
||
zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/upload_docs接口
|
||
"""
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"override": override,
|
||
"to_vector_store": to_vector_store,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
response = self.post(
|
||
"/knowledge_base/upload_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
delete_content: bool = False,
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/delete_docs接口
|
||
"""
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"delete_content": delete_content,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/delete_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_info(self, knowledge_base_name, kb_info):
|
||
"""
|
||
对应api.py/knowledge_base/update_info接口
|
||
"""
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"kb_info": kb_info,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_info",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
override_custom_docs: bool = False,
|
||
chunk_size=Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap=Settings.kb_settings.OVERLAP_SIZE,
|
||
zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/update_docs接口
|
||
"""
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"override_custom_docs": override_custom_docs,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
logger.info(f"update_kb_docs:{file_names}")
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def recreate_vector_store(
|
||
self,
|
||
knowledge_base_name: str,
|
||
allow_empty_kb: bool = True,
|
||
vs_type: str = Settings.kb_settings.DEFAULT_VS_TYPE,
|
||
embed_model: str = get_default_embedding(),
|
||
chunk_size=Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap=Settings.kb_settings.OVERLAP_SIZE,
|
||
zh_title_enhance=Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
):
|
||
"""
|
||
对应api.py/knowledge_base/recreate_vector_store接口
|
||
"""
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"allow_empty_kb": allow_empty_kb,
|
||
"vs_type": vs_type,
|
||
"embed_model": embed_model,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/recreate_vector_store",
|
||
json=data,
|
||
stream=True,
|
||
timeout=None,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def embed_texts(
|
||
self,
|
||
texts: List[str],
|
||
embed_model: str = get_default_embedding(),
|
||
to_query: bool = False,
|
||
) -> List[List[float]]:
|
||
"""
|
||
对文本进行向量化,可选模型包括本地 embed_models 和支持 embeddings 的在线模型
|
||
"""
|
||
data = {
|
||
"texts": texts,
|
||
"embed_model": embed_model,
|
||
"to_query": to_query,
|
||
}
|
||
resp = self.post(
|
||
"/other/embed_texts",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(
|
||
resp, as_json=True, value_func=lambda r: r.get("data")
|
||
)
|
||
|
||
def chat_feedback(
|
||
self,
|
||
message_id: str,
|
||
score: int,
|
||
reason: str = "",
|
||
) -> int:
|
||
"""
|
||
反馈对话评价
|
||
"""
|
||
data = {
|
||
"message_id": message_id,
|
||
"score": score,
|
||
"reason": reason,
|
||
}
|
||
resp = self.post("/chat/feedback", json=data)
|
||
return self._get_response_value(resp)
|
||
|
||
def list_tools(self) -> Dict:
|
||
"""
|
||
列出所有工具
|
||
"""
|
||
resp = self.get("/tools")
|
||
return self._get_response_value(
|
||
resp, as_json=True, value_func=lambda r: r.get("data", {})
|
||
)
|
||
|
||
def call_tool(
|
||
self,
|
||
name: str,
|
||
tool_input: Dict = {},
|
||
):
|
||
"""
|
||
调用工具
|
||
"""
|
||
data = {
|
||
"name": name,
|
||
"tool_input": tool_input,
|
||
}
|
||
resp = self.post("/tools/call", json=data)
|
||
return self._get_response_value(
|
||
resp, as_json=True, value_func=lambda r: r.get("data")
|
||
)
|
||
|
||
|
||
class AsyncApiRequest(ApiRequest):
|
||
def __init__(
|
||
self, base_url: str = api_address(), timeout: float = Settings.basic_settings.HTTPX_DEFAULT_TIMEOUT
|
||
):
|
||
super().__init__(base_url, timeout)
|
||
self._use_async = True
|
||
|
||
|
||
def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
|
||
"""
|
||
return error message if error occured when requests API
|
||
"""
|
||
if isinstance(data, dict):
|
||
if key in data:
|
||
return data[key]
|
||
if "code" in data and data["code"] != 200:
|
||
return data["msg"]
|
||
return ""
|
||
|
||
|
||
def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
|
||
"""
|
||
return error message if error occured when requests API
|
||
"""
|
||
if (
|
||
isinstance(data, dict)
|
||
and key in data
|
||
and "code" in data
|
||
and data["code"] == 200
|
||
):
|
||
return data[key]
|
||
return ""
|
||
|
||
|
||
def get_img_base64(file_name: str) -> str:
|
||
"""
|
||
get_img_base64 used in streamlit.
|
||
absolute local path not working on windows.
|
||
"""
|
||
image = f"{Settings.basic_settings.IMG_DIR}/{file_name}"
|
||
# 读取图片
|
||
with open(image, "rb") as f:
|
||
buffer = BytesIO(f.read())
|
||
base_str = base64.b64encode(buffer.getvalue()).decode()
|
||
return f"data:image/png;base64,{base_str}"
|
||
|
||
|
||
if __name__ == "__main__":
|
||
api = ApiRequest()
|
||
aapi = AsyncApiRequest()
|
||
|
||
# with api.chat_chat("你好") as r:
|
||
# for t in r.iter_text(None):
|
||
# print(t)
|
||
|
||
# r = api.chat_chat("你好", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# print(api.list_knowledge_bases())
|