112 lines
3.2 KiB
Python
112 lines
3.2 KiB
Python
import json
|
||
import sys
|
||
from pathlib import Path
|
||
|
||
import requests
|
||
|
||
sys.path.append(str(Path(__file__).parent.parent.parent))
|
||
from pprint import pprint
|
||
|
||
from chatchat.server.utils import api_address
|
||
|
||
|
||
api_base_url = api_address()
|
||
api="/chat/chat/completions"
|
||
url = f"{api_base_url}{api}"
|
||
|
||
|
||
def dump_input(d, title):
|
||
print("\n")
|
||
print("=" * 30 + title + " input " + "=" * 30)
|
||
pprint(d)
|
||
|
||
|
||
def dump_output(r, title):
|
||
print("\n")
|
||
print("=" * 30 + title + " output" + "=" * 30)
|
||
for line in r.iter_content(None, decode_unicode=True):
|
||
print(line, end="", flush=True)
|
||
|
||
|
||
headers = {
|
||
"accept": "application/json",
|
||
"Content-Type": "application/json",
|
||
}
|
||
|
||
|
||
def test_llm_chat():
|
||
data = {
|
||
"model": "qwen1.5-chat",
|
||
"messages": [
|
||
{"role": "user", "content": "你好"},
|
||
{"role": "assistant", "content": "你好,我是人工智能大模型"},
|
||
{"role": "user", "content": "请用100字左右的文字介绍自己"},
|
||
],
|
||
"stream": True,
|
||
"temperature": 0.7,
|
||
}
|
||
|
||
dump_input(data, "LLM Chat")
|
||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||
dump_output(response, "LLM Chat")
|
||
assert response.status_code == 200
|
||
|
||
|
||
def test_agent_chat():
|
||
tools = list(requests.get(f"{api_base_url}/tools").json()["data"])
|
||
data = {
|
||
"model": "qwen1.5-chat",
|
||
"messages": [
|
||
{"role": "user", "content": "37+48=?"},
|
||
],
|
||
"stream": True,
|
||
"temperature": 0.7,
|
||
"tools": tools,
|
||
}
|
||
|
||
dump_input(data, "Agent Chat")
|
||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||
dump_output(response, "Agent Chat")
|
||
assert response.status_code == 200
|
||
|
||
|
||
def test_kb_chat_auto():
|
||
data = {
|
||
"messages": [
|
||
{"role": "user", "content": "如何提问以获得高质量答案"},
|
||
],
|
||
"model": "qwen1.5-chat",
|
||
"tool_choice": "search_local_knowledgebase",
|
||
"stream": True,
|
||
}
|
||
dump_input(data, "KB Chat (auto parameters)")
|
||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||
print("\n")
|
||
print("=" * 30 + "KB Chat (auto parameters)" + " output" + "=" * 30)
|
||
for line in response.iter_content(None, decode_unicode=True):
|
||
if line.startswith("data: "):
|
||
data = json.loads(line[6:])
|
||
pprint(data)
|
||
assert response.status_code == 200
|
||
|
||
|
||
def test_kb_chat_mannual():
|
||
data = {
|
||
"messages": [
|
||
{"role": "user", "content": "如何提问以获得高质量答案"},
|
||
],
|
||
"model": "qwen1.5-chat",
|
||
"tool_choice": "search_local_knowledgebase",
|
||
"extra_body": {"tool_input": {"database": "samples", "query": "如何提问以获得高质量答案"}},
|
||
"stream": True,
|
||
}
|
||
dump_input(data, "KB Chat (auto parameters)")
|
||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||
print("\n")
|
||
print("=" * 30 + "KB Chat (auto parameters)" + " output" + "=" * 30)
|
||
for line in response.iter_content(None, decode_unicode=True):
|
||
if line.startswith("data: "):
|
||
data = json.loads(line[6:])
|
||
pprint(data)
|
||
assert response.status_code == 200
|