562 lines
21 KiB
Python
562 lines
21 KiB
Python
import importlib
|
||
import json
|
||
import os
|
||
from functools import lru_cache
|
||
from pathlib import Path
|
||
from urllib.parse import urlencode
|
||
from typing import Dict, Generator, List, Tuple, Union
|
||
|
||
import chardet
|
||
import langchain_community.document_loaders
|
||
from langchain.docstore.document import Document
|
||
from langchain.text_splitter import MarkdownHeaderTextSplitter, TextSplitter
|
||
from langchain_community.document_loaders import JSONLoader, TextLoader
|
||
|
||
from chatchat.settings import Settings
|
||
from chatchat.server.file_rag.text_splitter import (
|
||
# zh_title_enhance as func_zh_title_enhance,
|
||
zh_third_title_enhance,
|
||
zh_second_title_enhance,
|
||
zh_first_title_enhance
|
||
)
|
||
from chatchat.server.utils import run_in_process_pool, run_in_thread_pool
|
||
from chatchat.utils import build_logger
|
||
import re
|
||
import threading
|
||
|
||
logger = build_logger()
|
||
|
||
|
||
def validate_kb_name(knowledge_base_id: str) -> bool:
|
||
# 检查是否包含预期外的字符或路径攻击关键字
|
||
if "../" in knowledge_base_id:
|
||
return False
|
||
return True
|
||
|
||
|
||
def get_kb_path(knowledge_base_name: str):
|
||
return os.path.join(Settings.basic_settings.KB_ROOT_PATH, knowledge_base_name)
|
||
|
||
|
||
def get_doc_path(knowledge_base_name: str):
|
||
return os.path.join(get_kb_path(knowledge_base_name), "content")
|
||
|
||
|
||
def get_vs_path(knowledge_base_name: str, vector_name: str):
|
||
return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name)
|
||
|
||
|
||
def get_file_path(knowledge_base_name: str, doc_name: str):
|
||
doc_path = Path(get_doc_path(knowledge_base_name)).resolve()
|
||
file_path = (doc_path / doc_name).resolve()
|
||
if str(file_path).startswith(str(doc_path)):
|
||
return str(file_path)
|
||
|
||
|
||
def list_kbs_from_folder():
|
||
return [
|
||
f
|
||
for f in os.listdir(Settings.basic_settings.KB_ROOT_PATH)
|
||
if os.path.isdir(os.path.join(Settings.basic_settings.KB_ROOT_PATH, f))
|
||
]
|
||
|
||
|
||
def list_files_from_folder(kb_name: str):
|
||
doc_path = get_doc_path(kb_name)
|
||
result = []
|
||
|
||
def is_skiped_path(path: str):
|
||
tail = os.path.basename(path).lower()
|
||
for x in ["temp", "tmp", ".", "~$"]:
|
||
if tail.startswith(x):
|
||
return True
|
||
if "_source.txt" in tail.lower() or "_split.txt" in tail.lower():
|
||
return True
|
||
|
||
return False
|
||
|
||
def process_entry(entry):
|
||
if is_skiped_path(entry.path):
|
||
return
|
||
|
||
if entry.is_symlink():
|
||
target_path = os.path.realpath(entry.path)
|
||
with os.scandir(target_path) as target_it:
|
||
for target_entry in target_it:
|
||
process_entry(target_entry)
|
||
elif entry.is_file():
|
||
file_path = Path(
|
||
os.path.relpath(entry.path, doc_path)
|
||
).as_posix() # 路径统一为 posix 格式
|
||
result.append(file_path)
|
||
elif entry.is_dir():
|
||
with os.scandir(entry.path) as it:
|
||
for sub_entry in it:
|
||
process_entry(sub_entry)
|
||
|
||
with os.scandir(doc_path) as it:
|
||
for entry in it:
|
||
process_entry(entry)
|
||
|
||
return result
|
||
|
||
|
||
LOADER_DICT = {
|
||
"UnstructuredHTMLLoader": [".html", ".htm"],
|
||
"MHTMLLoader": [".mhtml"],
|
||
"TextLoader": [".md"],
|
||
"UnstructuredMarkdownLoader": [".md"],
|
||
"JSONLoader": [".json"],
|
||
"JSONLinesLoader": [".jsonl"],
|
||
"CSVLoader": [".csv"],
|
||
# "FilteredCSVLoader": [".csv"], 如果使用自定义分割csv
|
||
"RapidOCRPDFLoader": [".pdf"],
|
||
# "RapidOCRDocLoader": [".docx"],
|
||
"RapidOCRPPTLoader": [
|
||
".ppt",
|
||
".pptx",
|
||
],
|
||
"RapidOCRLoader": [".png", ".jpg", ".jpeg", ".bmp"],
|
||
"UnstructuredFileLoader": [
|
||
".eml",
|
||
".msg",
|
||
".rst",
|
||
".rtf",
|
||
".txt",
|
||
".xml",
|
||
".epub",
|
||
".odt",
|
||
".tsv",
|
||
],
|
||
"UnstructuredEmailLoader": [".eml", ".msg"],
|
||
"UnstructuredEPubLoader": [".epub"],
|
||
"UnstructuredExcelLoader": [".xlsx", ".xls", ".xlsd"],
|
||
"NotebookLoader": [".ipynb"],
|
||
"UnstructuredODTLoader": [".odt"],
|
||
"PythonLoader": [".py"],
|
||
"UnstructuredRSTLoader": [".rst"],
|
||
"UnstructuredRTFLoader": [".rtf"],
|
||
"SRTLoader": [".srt"],
|
||
"TomlLoader": [".toml"],
|
||
"UnstructuredTSVLoader": [".tsv"],
|
||
# "UnstructuredWordDocumentLoader": [".docx"],
|
||
"UnstructuredXMLLoader": [".xml"],
|
||
"UnstructuredPowerPointLoader": [".ppt", ".pptx"],
|
||
"EverNoteLoader": [".enex"],
|
||
"UnstructuredWordDocumentLoader":['.doc'],
|
||
"RapidWordLoader":['.docx'],
|
||
}
|
||
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
|
||
|
||
|
||
# patch json.dumps to disable ensure_ascii
|
||
def _new_json_dumps(obj, **kwargs):
|
||
kwargs["ensure_ascii"] = False
|
||
return _origin_json_dumps(obj, **kwargs)
|
||
|
||
|
||
if json.dumps is not _new_json_dumps:
|
||
_origin_json_dumps = json.dumps
|
||
json.dumps = _new_json_dumps
|
||
|
||
|
||
class JSONLinesLoader(JSONLoader):
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self._json_lines = True
|
||
|
||
|
||
langchain_community.document_loaders.JSONLinesLoader = JSONLinesLoader
|
||
|
||
|
||
def get_LoaderClass(file_extension):
|
||
for LoaderClass, extensions in LOADER_DICT.items():
|
||
if file_extension in extensions:
|
||
return LoaderClass
|
||
|
||
|
||
def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
|
||
"""
|
||
根据loader_name和文件路径或内容返回文档加载器。
|
||
"""
|
||
loader_kwargs = loader_kwargs or {}
|
||
try:
|
||
if loader_name in [
|
||
"RapidOCRPDFLoader",
|
||
"RapidOCRLoader",
|
||
"FilteredCSVLoader",
|
||
"RapidOCRDocLoader",
|
||
"RapidOCRPPTLoader",
|
||
"RapidWordLoader",
|
||
]:
|
||
document_loaders_module = importlib.import_module(
|
||
"chatchat.server.file_rag.document_loaders"
|
||
)
|
||
else:
|
||
document_loaders_module = importlib.import_module(
|
||
"langchain_community.document_loaders"
|
||
)
|
||
DocumentLoader = getattr(document_loaders_module, loader_name)
|
||
except Exception as e:
|
||
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
document_loaders_module = importlib.import_module(
|
||
"langchain_community.document_loaders"
|
||
)
|
||
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
||
|
||
if loader_name == "UnstructuredFileLoader":
|
||
loader_kwargs.setdefault("autodetect_encoding", True)
|
||
elif loader_name == "CSVLoader":
|
||
if not loader_kwargs.get("encoding"):
|
||
# 如果未指定 encoding,自动识别文件编码类型,避免langchain loader 加载文件报编码错误
|
||
with open(file_path, "rb") as struct_file:
|
||
encode_detect = chardet.detect(struct_file.read())
|
||
if encode_detect is None:
|
||
encode_detect = {"encoding": "utf-8"}
|
||
loader_kwargs["encoding"] = encode_detect["encoding"]
|
||
|
||
elif loader_name == "JSONLoader":
|
||
loader_kwargs.setdefault("jq_schema", ".")
|
||
loader_kwargs.setdefault("text_content", False)
|
||
elif loader_name == "JSONLinesLoader":
|
||
loader_kwargs.setdefault("jq_schema", ".")
|
||
loader_kwargs.setdefault("text_content", False)
|
||
|
||
loader = DocumentLoader(file_path, **loader_kwargs)
|
||
return loader
|
||
|
||
|
||
@lru_cache()
|
||
def make_text_splitter(splitter_name, chunk_size, chunk_overlap):
|
||
"""
|
||
根据参数获取特定的分词器
|
||
"""
|
||
logger.info(f"threadid:{threading.get_ident()}, make_text_splitter start....splitter_name:{splitter_name}")
|
||
splitter_name = splitter_name or "SpacyTextSplitter"
|
||
try:
|
||
if (
|
||
splitter_name == "MarkdownHeaderTextSplitter"
|
||
): # MarkdownHeaderTextSplitter特殊判定
|
||
headers_to_split_on = Settings.kb_settings.text_splitter_dict[splitter_name][
|
||
"headers_to_split_on"
|
||
]
|
||
text_splitter = MarkdownHeaderTextSplitter(
|
||
headers_to_split_on=headers_to_split_on, strip_headers=False
|
||
)
|
||
else:
|
||
try: # 优先使用用户自定义的text_splitter
|
||
text_splitter_module = importlib.import_module("chatchat.server.file_rag.text_splitter")
|
||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||
logger.info(f"****1111splitter_name:{splitter_name}")
|
||
except: # 否则使用langchain的text_splitter
|
||
text_splitter_module = importlib.import_module(
|
||
"langchain.text_splitter"
|
||
)
|
||
TextSplitter = getattr(text_splitter_module, splitter_name)
|
||
logger.info(f"****2222splitter_name:{splitter_name}")
|
||
|
||
if (
|
||
Settings.kb_settings.text_splitter_dict[splitter_name]["source"] == "tiktoken"
|
||
): # 从tiktoken加载
|
||
try:
|
||
text_splitter = TextSplitter.from_tiktoken_encoder(
|
||
encoding_name=Settings.kb_settings.text_splitter_dict[splitter_name][
|
||
"tokenizer_name_or_path"
|
||
],
|
||
pipeline="zh_core_web_sm",
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
)
|
||
logger.info(f"****333333splitter_name:{splitter_name}")
|
||
except:
|
||
text_splitter = TextSplitter.from_tiktoken_encoder(
|
||
encoding_name=Settings.kb_settings.text_splitter_dict[splitter_name][
|
||
"tokenizer_name_or_path"
|
||
],
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
)
|
||
logger.info(f"****44444splitter_name:{splitter_name}")
|
||
elif (
|
||
Settings.kb_settings.text_splitter_dict[splitter_name]["source"] == "huggingface"
|
||
): # 从huggingface加载
|
||
if (
|
||
Settings.kb_settings.text_splitter_dict[splitter_name]["tokenizer_name_or_path"]
|
||
== "gpt2"
|
||
):
|
||
from langchain.text_splitter import CharacterTextSplitter
|
||
from transformers import GPT2TokenizerFast
|
||
|
||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
||
else: # 字符长度加载
|
||
from transformers import AutoTokenizer
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
Settings.kb_settings.text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
||
trust_remote_code=True,
|
||
)
|
||
text_splitter = TextSplitter.from_huggingface_tokenizer(
|
||
tokenizer=tokenizer,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
)
|
||
else:
|
||
try:
|
||
text_splitter = TextSplitter(
|
||
pipeline="zh_core_web_sm",
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
)
|
||
except:
|
||
text_splitter = TextSplitter(
|
||
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
||
)
|
||
except Exception as e:
|
||
print(e)
|
||
text_splitter_module = importlib.import_module("langchain.text_splitter")
|
||
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
|
||
text_splitter = TextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||
logger.info(f"****55555splitter_name:RecursiveCharacterTextSplitter")
|
||
|
||
# If you use SpacyTextSplitter you can use GPU to do split likes Issue #1287
|
||
# text_splitter._tokenizer.max_length = 37016792
|
||
# text_splitter._tokenizer.prefer_gpu()
|
||
return text_splitter
|
||
|
||
|
||
class KnowledgeFile:
|
||
def __init__(
|
||
self,
|
||
filename: str,
|
||
knowledge_base_name: str,
|
||
loader_kwargs: Dict = {},
|
||
):
|
||
"""
|
||
对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。
|
||
"""
|
||
self.kb_name = knowledge_base_name
|
||
self.filename = str(Path(filename).as_posix())
|
||
self.ext = os.path.splitext(filename)[-1].lower()
|
||
self.doc_title_name, file_extension = os.path.splitext(filename)
|
||
if self.ext not in SUPPORTED_EXTS:
|
||
raise ValueError(f"暂未支持的文件格式 {self.filename}")
|
||
self.loader_kwargs = loader_kwargs
|
||
self.filepath = get_file_path(knowledge_base_name, filename)
|
||
self.docs = None
|
||
self.splited_docs = None
|
||
self.document_loader_name = get_LoaderClass(self.ext)
|
||
self.text_splitter_name = Settings.kb_settings.TEXT_SPLITTER_NAME
|
||
print(f"KnowledgeFile: filepath:{self.filepath}")
|
||
|
||
def file2docs(self, refresh: bool = False):
|
||
if self.docs is None or refresh:
|
||
logger.info(f"{self.document_loader_name} used for {self.filepath}")
|
||
loader = get_loader(
|
||
loader_name=self.document_loader_name,
|
||
file_path=self.filepath,
|
||
loader_kwargs=self.loader_kwargs,
|
||
)
|
||
if isinstance(loader, TextLoader):
|
||
loader.encoding = "utf8"
|
||
self.docs = loader.load()
|
||
else:
|
||
self.docs = loader.load()
|
||
return self.docs
|
||
|
||
def docs2texts(
|
||
self,
|
||
docs: List[Document] = None,
|
||
zh_title_enhance: bool = Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
refresh: bool = False,
|
||
chunk_size: int = Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap: int = Settings.kb_settings.OVERLAP_SIZE,
|
||
text_splitter: TextSplitter = None,
|
||
):
|
||
#add the title name on every paragraph, by weiweiwang 2025/1/13
|
||
def customize_zh_title_enhance(docs: Document) -> Document:
|
||
if len(docs) > 0:
|
||
for doc in docs:
|
||
doc.page_content = f"下文与({self.doc_title_name})有关。{doc.page_content}"
|
||
return docs
|
||
else:
|
||
print("文件不存在")
|
||
|
||
logger.info(f"threadid:{threading.get_ident()},********docs2texts")
|
||
docs = docs or self.file2docs(refresh=refresh)
|
||
#remove the redundant line break after loading, by weiweiwang 2025/1/13
|
||
for doc in docs:
|
||
if doc.page_content.strip() != "":
|
||
doc.page_content = re.sub(r"\n{2,}", "\n", doc.page_content.strip())
|
||
|
||
file_name_without_extension, file_extension = os.path.splitext(self.filepath)
|
||
|
||
if not docs:
|
||
return []
|
||
if self.ext not in [".csv"]:
|
||
logger.info(f"threadid:{threading.get_ident()}, self.ext not in csv")
|
||
if text_splitter is None:
|
||
logger.info(f" threadid:{threading.get_ident()}, text_splitter is None")
|
||
text_splitter = make_text_splitter(
|
||
splitter_name=self.text_splitter_name,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
)
|
||
else:
|
||
logger.error(f"text_splitter is Not None, text_splitter_name: {self.text_splitter_name}")
|
||
if self.text_splitter_name == "MarkdownHeaderTextSplitter":
|
||
docs = text_splitter.split_text(docs[0].page_content)
|
||
else:
|
||
# print(f"**********************docs2texts: text_splitter.split_documents(docs)")
|
||
# outputfile = file_name_without_extension + "_source.txt"
|
||
# with open(outputfile, 'w') as file:
|
||
# for doc in docs:
|
||
# file.write(doc.page_content)
|
||
docs = text_splitter.split_documents(docs)
|
||
|
||
if not docs:
|
||
return []
|
||
|
||
print(f"文档切分:{len(docs)} 块")
|
||
if zh_title_enhance:
|
||
# docs = func_zh_title_enhance(docs)
|
||
docs = zh_third_title_enhance(docs)
|
||
docs = zh_second_title_enhance(docs)
|
||
docs = zh_first_title_enhance(docs)
|
||
docs = customize_zh_title_enhance(docs)
|
||
|
||
i = 1
|
||
outputfile = file_name_without_extension + "_split.txt"
|
||
# 打开文件以写入模式
|
||
with open(outputfile, 'w') as file:
|
||
for doc in docs:
|
||
#print(f"**********切分段{i}:{doc}")
|
||
file.write(f"\n**********切分段{i}")
|
||
file.write(doc.page_content)
|
||
i = i+1
|
||
|
||
self.splited_docs = docs
|
||
return self.splited_docs
|
||
|
||
def file2text(
|
||
self,
|
||
zh_title_enhance: bool = Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
refresh: bool = False,
|
||
chunk_size: int = Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap: int = Settings.kb_settings.OVERLAP_SIZE,
|
||
text_splitter: TextSplitter = None,
|
||
):
|
||
if self.splited_docs is None or refresh:
|
||
docs = self.file2docs()
|
||
self.splited_docs = self.docs2texts(
|
||
docs=docs,
|
||
zh_title_enhance=zh_title_enhance,
|
||
refresh=refresh,
|
||
chunk_size=chunk_size,
|
||
chunk_overlap=chunk_overlap,
|
||
text_splitter=text_splitter,
|
||
)
|
||
return self.splited_docs
|
||
|
||
def file_exist(self):
|
||
return os.path.isfile(self.filepath)
|
||
|
||
def get_mtime(self):
|
||
return os.path.getmtime(self.filepath)
|
||
|
||
def get_size(self):
|
||
return os.path.getsize(self.filepath)
|
||
|
||
|
||
def files2docs_in_thread_file2docs(
|
||
*, file: KnowledgeFile, **kwargs
|
||
) -> Tuple[bool, Tuple[str, str, List[Document]]]:
|
||
try:
|
||
logger.info(f"file2docs 从文件 {file.kb_name}/{file.filename}, threadid:{threading.get_ident()}")
|
||
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
|
||
except Exception as e:
|
||
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
|
||
logger.error(f"{e.__class__.__name__}: {msg}")
|
||
return False, (file.kb_name, file.filename, msg)
|
||
|
||
|
||
def files2docs_in_thread(
|
||
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
|
||
chunk_size: int = Settings.kb_settings.CHUNK_SIZE,
|
||
chunk_overlap: int = Settings.kb_settings.OVERLAP_SIZE,
|
||
zh_title_enhance: bool = Settings.kb_settings.ZH_TITLE_ENHANCE,
|
||
) -> Generator:
|
||
"""
|
||
利用多线程批量将磁盘文件转化成langchain Document.
|
||
如果传入参数是Tuple,形式为(filename, kb_name)
|
||
生成器返回值为 status, (kb_name, file_name, docs | error)
|
||
"""
|
||
|
||
kwargs_list = []
|
||
for i, file in enumerate(files):
|
||
kwargs = {}
|
||
try:
|
||
if isinstance(file, tuple) and len(file) >= 2:
|
||
filename = file[0]
|
||
kb_name = file[1]
|
||
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
||
elif isinstance(file, dict):
|
||
filename = file.pop("filename")
|
||
kb_name = file.pop("kb_name")
|
||
kwargs.update(file)
|
||
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
||
kwargs["file"] = file
|
||
kwargs["chunk_size"] = chunk_size
|
||
kwargs["chunk_overlap"] = chunk_overlap
|
||
kwargs["zh_title_enhance"] = zh_title_enhance
|
||
kwargs_list.append(kwargs)
|
||
except Exception as e:
|
||
yield False, (kb_name, filename, str(e))
|
||
|
||
for result in run_in_thread_pool(
|
||
func=files2docs_in_thread_file2docs, params=kwargs_list
|
||
):
|
||
yield result
|
||
|
||
|
||
def format_reference(kb_name: str, docs: List[Dict], api_base_url: str="") -> List[Dict]:
|
||
'''
|
||
将知识库检索结果格式化为参考文档的格式
|
||
'''
|
||
from chatchat.server.utils import api_address
|
||
api_base_url = api_base_url or api_address(is_public=True)
|
||
|
||
source_documents = []
|
||
for inum, doc in enumerate(docs):
|
||
filename = doc.get("metadata", {}).get("source")
|
||
parameters = urlencode(
|
||
{
|
||
"knowledge_base_name": kb_name,
|
||
"file_name": filename,
|
||
}
|
||
)
|
||
api_base_url = api_base_url.strip(" /")
|
||
url = (
|
||
f"{api_base_url}/knowledge_base/download_doc?" + parameters
|
||
)
|
||
page_content = doc.get("page_content")
|
||
ref = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{page_content}\n\n"""
|
||
source_documents.append(ref)
|
||
|
||
return source_documents
|
||
|
||
|
||
# if __name__ == "__main__":
|
||
# from pprint import pprint
|
||
#
|
||
# kb_file = KnowledgeFile(
|
||
# filename="E:\\LLM\\Data\\Test.md", knowledge_base_name="samples"
|
||
# )
|
||
# # kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
|
||
# kb_file.text_splitter_name = "MarkdownHeaderTextSplitter"
|
||
# docs = kb_file.file2docs()
|
||
# # pprint(docs[-1])
|
||
# texts = kb_file.docs2texts(docs)
|
||
# for text in texts:
|
||
# print(text)
|