248 lines
12 KiB
Python
248 lines
12 KiB
Python
from __future__ import annotations
|
||
|
||
import asyncio, json
|
||
import uuid
|
||
from typing import AsyncIterable, List, Optional, Literal
|
||
|
||
from fastapi import Body, Request
|
||
from fastapi.concurrency import run_in_threadpool
|
||
from sse_starlette.sse import EventSourceResponse
|
||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
from langchain.prompts.chat import ChatPromptTemplate
|
||
|
||
|
||
from chatchat.settings import Settings
|
||
from chatchat.server.agent.tools_factory.search_internet import search_engine
|
||
from chatchat.server.api_server.api_schemas import OpenAIChatOutput
|
||
from chatchat.server.chat.utils import History
|
||
from chatchat.server.knowledge_base.kb_service.base import KBServiceFactory
|
||
from chatchat.server.knowledge_base.kb_doc_api import search_docs, search_temp_docs
|
||
from chatchat.server.knowledge_base.utils import format_reference
|
||
from chatchat.server.utils import (wrap_done, get_ChatOpenAI, get_default_llm,
|
||
BaseResponse, get_prompt_template, build_logger,
|
||
check_embed_model, api_address
|
||
)
|
||
import time
|
||
|
||
logger = build_logger()
|
||
|
||
|
||
async def kb_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
|
||
mode: Literal["local_kb", "temp_kb", "search_engine"] = Body("local_kb", description="知识来源"),
|
||
kb_name: str = Body("", description="mode=local_kb时为知识库名称;temp_kb时为临时知识库ID,search_engine时为搜索引擎名称", examples=["samples"]),
|
||
top_k: int = Body(Settings.kb_settings.VECTOR_SEARCH_TOP_K, description="匹配向量数"),
|
||
score_threshold: float = Body(
|
||
Settings.kb_settings.SCORE_THRESHOLD,
|
||
description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右",
|
||
ge=0,
|
||
le=2,
|
||
),
|
||
history: List[History] = Body(
|
||
[],
|
||
description="历史对话",
|
||
examples=[[
|
||
{"role": "user",
|
||
"content": "我们来玩成语接龙,我先来,生龙活虎"},
|
||
{"role": "assistant",
|
||
"content": "虎头虎脑"}]]
|
||
),
|
||
stream: bool = Body(True, description="流式输出"),
|
||
model: str = Body(get_default_llm(), description="LLM 模型名称。"),
|
||
temperature: float = Body(Settings.model_settings.TEMPERATURE, description="LLM 采样温度", ge=0.0, le=2.0),
|
||
max_tokens: Optional[int] = Body(
|
||
Settings.model_settings.MAX_TOKENS,
|
||
description="限制LLM生成Token数量,默认None代表模型最大值"
|
||
),
|
||
prompt_name: str = Body(
|
||
"default",
|
||
description="使用的prompt模板名称(在prompt_settings.yaml中配置)"
|
||
),
|
||
return_direct: bool = Body(False, description="直接返回检索结果,不送入 LLM"),
|
||
request: Request = None,
|
||
):
|
||
logger.info(f"kb_chat:,mode {mode}")
|
||
start_time = time.time()
|
||
if mode == "local_kb":
|
||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||
if kb is None:
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {kb_name}")
|
||
|
||
async def knowledge_base_chat_iterator() -> AsyncIterable[str]:
|
||
try:
|
||
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode}")
|
||
start_time1 = time.time()
|
||
nonlocal history, prompt_name, max_tokens
|
||
|
||
history = [History.from_data(h) for h in history]
|
||
|
||
if mode == "local_kb":
|
||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||
ok, msg = kb.check_embed_model()
|
||
logger.info(f"***********************************knowledge_base_chat_iterator:,mode {mode},kb_name:{kb_name}")
|
||
if not ok:
|
||
raise ValueError(msg)
|
||
# docs = search_docs( query = query,knowledge_base_name = kb_name,top_k = top_k, score_threshold = score_threshold,)
|
||
docs = await run_in_threadpool(search_docs,
|
||
query=query,
|
||
knowledge_base_name=kb_name,
|
||
top_k=top_k,
|
||
score_threshold=score_threshold,
|
||
file_name="",
|
||
metadata={})
|
||
|
||
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
|
||
logger.info(
|
||
f"***********************************knowledge_base_chat_iterator:,after format_reference:{docs}")
|
||
end_time1 = time.time()
|
||
execution_time1 = end_time1 - start_time1
|
||
logger.info(f"kb_chat Execution time检索完成: {execution_time1:.6f} seconds")
|
||
elif mode == "temp_kb":
|
||
ok, msg = check_embed_model()
|
||
if not ok:
|
||
raise ValueError(msg)
|
||
docs = await run_in_threadpool(search_temp_docs,
|
||
kb_name,
|
||
query=query,
|
||
top_k=top_k,
|
||
score_threshold=score_threshold)
|
||
source_documents = format_reference(kb_name, docs, api_address(is_public=True))
|
||
elif mode == "search_engine":
|
||
result = await run_in_threadpool(search_engine, query, top_k, kb_name)
|
||
docs = [x.dict() for x in result.get("docs", [])]
|
||
source_documents = [f"""出处 [{i + 1}] [{d['metadata']['filename']}]({d['metadata']['source']}) \n\n{d['page_content']}\n\n""" for i,d in enumerate(docs)]
|
||
else:
|
||
docs = []
|
||
source_documents = []
|
||
# import rich
|
||
# rich.print(dict(
|
||
# mode=mode,
|
||
# query=query,
|
||
# knowledge_base_name=kb_name,
|
||
# top_k=top_k,
|
||
# score_threshold=score_threshold,
|
||
# ))
|
||
# rich.print(docs)
|
||
if return_direct:
|
||
yield OpenAIChatOutput(
|
||
id=f"chat{uuid.uuid4()}",
|
||
model=None,
|
||
object="chat.completion",
|
||
content="",
|
||
role="assistant",
|
||
finish_reason="stop",
|
||
docs=source_documents,
|
||
) .model_dump_json()
|
||
return
|
||
|
||
callback = AsyncIteratorCallbackHandler()
|
||
callbacks = [callback]
|
||
|
||
# Enable langchain-chatchat to support langfuse
|
||
import os
|
||
langfuse_secret_key = os.environ.get('LANGFUSE_SECRET_KEY')
|
||
langfuse_public_key = os.environ.get('LANGFUSE_PUBLIC_KEY')
|
||
langfuse_host = os.environ.get('LANGFUSE_HOST')
|
||
if langfuse_secret_key and langfuse_public_key and langfuse_host :
|
||
from langfuse import Langfuse
|
||
from langfuse.callback import CallbackHandler
|
||
langfuse_handler = CallbackHandler()
|
||
callbacks.append(langfuse_handler)
|
||
|
||
if max_tokens in [None, 0]:
|
||
max_tokens = Settings.model_settings.MAX_TOKENS
|
||
|
||
start_time1 = time.time()
|
||
llm = get_ChatOpenAI(
|
||
model_name=model,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
callbacks=callbacks,
|
||
)
|
||
# TODO: 视情况使用 API
|
||
# # 加入reranker
|
||
# if Settings.kb_settings.USE_RERANKER:
|
||
# reranker_model_path = get_model_path(Settings.kb_settings.RERANKER_MODEL)
|
||
# reranker_model = LangchainReranker(top_n=top_k,
|
||
# device=embedding_device(),
|
||
# max_length=Settings.kb_settings.RERANKER_MAX_LENGTH,
|
||
# model_name_or_path=reranker_model_path
|
||
# )
|
||
# print("-------------before rerank-----------------")
|
||
# print(docs)
|
||
# docs = reranker_model.compress_documents(documents=docs,
|
||
# query=query)
|
||
# print("------------after rerank------------------")
|
||
# print(docs)
|
||
context = "\n\n".join([doc["page_content"] for doc in docs])
|
||
|
||
if len(docs) == 0: # 如果没有找到相关文档,使用empty模板
|
||
prompt_name = "empty"
|
||
prompt_template = get_prompt_template("rag", prompt_name)
|
||
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
|
||
chat_prompt = ChatPromptTemplate.from_messages(
|
||
[i.to_msg_template() for i in history] + [input_msg])
|
||
|
||
chain = chat_prompt | llm
|
||
|
||
# Begin a task that runs in the background.
|
||
task = asyncio.create_task(wrap_done(
|
||
chain.ainvoke({"context": context, "question": query}),
|
||
callback.done),
|
||
)
|
||
|
||
if len(source_documents) == 0: # 没有找到相关文档
|
||
source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>")
|
||
|
||
if stream:
|
||
# yield documents first
|
||
ret = OpenAIChatOutput(
|
||
id=f"chat{uuid.uuid4()}",
|
||
object="chat.completion.chunk",
|
||
content="",
|
||
role="assistant",
|
||
model=model,
|
||
docs=source_documents,
|
||
)
|
||
yield ret.model_dump_json()
|
||
|
||
async for token in callback.aiter():
|
||
ret = OpenAIChatOutput(
|
||
id=f"chat{uuid.uuid4()}",
|
||
object="chat.completion.chunk",
|
||
content=token,
|
||
role="assistant",
|
||
model=model,
|
||
)
|
||
yield ret.model_dump_json()
|
||
else:
|
||
answer = ""
|
||
async for token in callback.aiter():
|
||
answer += token
|
||
ret = OpenAIChatOutput(
|
||
id=f"chat{uuid.uuid4()}",
|
||
object="chat.completion",
|
||
content=answer,
|
||
role="assistant",
|
||
model=model,
|
||
)
|
||
yield ret.model_dump_json()
|
||
await task
|
||
except asyncio.exceptions.CancelledError:
|
||
logger.warning("streaming progress has been interrupted by user.")
|
||
return
|
||
except Exception as e:
|
||
logger.error(f"error in knowledge chat: {e}")
|
||
yield {"data": json.dumps({"error": str(e)})}
|
||
return
|
||
|
||
if stream:
|
||
eventSource = EventSourceResponse(knowledge_base_chat_iterator())
|
||
# 记录结束时间
|
||
end_time = time.time()
|
||
# 计算执行时间
|
||
execution_time = end_time - start_time
|
||
logger.info(f"final kb_chat Execution time: {execution_time:.6f} seconds")
|
||
return eventSource
|
||
else:
|
||
return await knowledge_base_chat_iterator().__anext__()
|