535 lines
16 KiB
Python
535 lines
16 KiB
Python
import operator
|
||
import os
|
||
from abc import ABC, abstractmethod
|
||
from pathlib import Path
|
||
from typing import Dict, List, Optional, Tuple, Union
|
||
|
||
from langchain.docstore.document import Document
|
||
|
||
from chatchat.settings import Settings
|
||
from chatchat.utils import build_logger
|
||
from chatchat.server.db.models.knowledge_base_model import KnowledgeBaseSchema
|
||
from chatchat.server.db.repository.knowledge_base_repository import (
|
||
add_kb_to_db,
|
||
delete_kb_from_db,
|
||
get_kb_detail,
|
||
kb_exists,
|
||
list_kbs_from_db,
|
||
load_kb_from_db,
|
||
)
|
||
from chatchat.server.db.repository.knowledge_file_repository import (
|
||
add_file_to_db,
|
||
count_files_from_db,
|
||
delete_file_from_db,
|
||
delete_files_from_db,
|
||
file_exists_in_db,
|
||
get_file_detail,
|
||
list_docs_from_db,
|
||
list_files_from_db,
|
||
)
|
||
from chatchat.server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||
from chatchat.server.knowledge_base.utils import (
|
||
KnowledgeFile,
|
||
get_doc_path,
|
||
get_kb_path,
|
||
list_files_from_folder,
|
||
list_kbs_from_folder,
|
||
)
|
||
from chatchat.server.utils import (
|
||
check_embed_model as _check_embed_model,
|
||
get_default_embedding,
|
||
)
|
||
|
||
|
||
logger = build_logger()
|
||
|
||
|
||
class SupportedVSType:
|
||
FAISS = "faiss"
|
||
MILVUS = "milvus"
|
||
DEFAULT = "default"
|
||
ZILLIZ = "zilliz"
|
||
PG = "pg"
|
||
RELYT = "relyt"
|
||
ES = "es"
|
||
CHROMADB = "chromadb"
|
||
|
||
|
||
class KBService(ABC):
|
||
def __init__(
|
||
self,
|
||
knowledge_base_name: str,
|
||
kb_info: str = None,
|
||
embed_model: str = get_default_embedding(),
|
||
):
|
||
self.kb_name = knowledge_base_name
|
||
self.kb_info = kb_info or Settings.kb_settings.KB_INFO.get(
|
||
knowledge_base_name, f"关于{knowledge_base_name}的知识库"
|
||
)
|
||
self.embed_model = embed_model
|
||
self.kb_path = get_kb_path(self.kb_name)
|
||
self.doc_path = get_doc_path(self.kb_name)
|
||
self.do_init()
|
||
|
||
def __repr__(self) -> str:
|
||
return f"{self.kb_name} @ {self.embed_model}"
|
||
|
||
def save_vector_store(self):
|
||
"""
|
||
保存向量库:FAISS保存到磁盘,milvus保存到数据库。PGVector暂未支持
|
||
"""
|
||
pass
|
||
|
||
def check_embed_model(self) -> Tuple[bool, str]:
|
||
return _check_embed_model(self.embed_model)
|
||
|
||
def create_kb(self):
|
||
"""
|
||
创建知识库
|
||
"""
|
||
if not os.path.exists(self.doc_path):
|
||
os.makedirs(self.doc_path)
|
||
|
||
status = add_kb_to_db(
|
||
self.kb_name, self.kb_info, self.vs_type(), self.embed_model
|
||
)
|
||
|
||
if status:
|
||
self.do_create_kb()
|
||
return status
|
||
|
||
def clear_vs(self):
|
||
"""
|
||
删除向量库中所有内容
|
||
"""
|
||
self.do_clear_vs()
|
||
status = delete_files_from_db(self.kb_name)
|
||
return status
|
||
|
||
def drop_kb(self):
|
||
"""
|
||
删除知识库
|
||
"""
|
||
self.do_drop_kb()
|
||
status = delete_kb_from_db(self.kb_name)
|
||
return status
|
||
|
||
def add_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
向知识库添加文件
|
||
如果指定了docs,则不再将文本向量化,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if not self.check_embed_model()[0]:
|
||
return False
|
||
|
||
if docs:
|
||
custom_docs = True
|
||
else:
|
||
docs = kb_file.file2text()
|
||
custom_docs = False
|
||
|
||
if docs:
|
||
# 将 metadata["source"] 改为相对路径
|
||
for doc in docs:
|
||
try:
|
||
doc.metadata.setdefault("source", kb_file.filename)
|
||
source = doc.metadata.get("source", "")
|
||
if os.path.isabs(source):
|
||
rel_path = Path(source).relative_to(self.doc_path)
|
||
doc.metadata["source"] = str(rel_path.as_posix().strip("/"))
|
||
except Exception as e:
|
||
print(
|
||
f"cannot convert absolute path ({source}) to relative path. error is : {e}"
|
||
)
|
||
self.delete_doc(kb_file)
|
||
doc_infos = self.do_add_doc(docs, **kwargs)
|
||
status = add_file_to_db(
|
||
kb_file,
|
||
custom_docs=custom_docs,
|
||
docs_count=len(docs),
|
||
doc_infos=doc_infos,
|
||
)
|
||
else:
|
||
status = False
|
||
return status
|
||
|
||
def delete_doc(
|
||
self, kb_file: KnowledgeFile, delete_content: bool = False, **kwargs
|
||
):
|
||
"""
|
||
从知识库删除文件
|
||
"""
|
||
self.do_delete_doc(kb_file, **kwargs)
|
||
status = delete_file_from_db(kb_file)
|
||
if delete_content and os.path.exists(kb_file.filepath):
|
||
os.remove(kb_file.filepath)
|
||
return status
|
||
|
||
def update_info(self, kb_info: str):
|
||
"""
|
||
更新知识库介绍
|
||
"""
|
||
self.kb_info = kb_info
|
||
status = add_kb_to_db(
|
||
self.kb_name, self.kb_info, self.vs_type(), self.embed_model
|
||
)
|
||
return status
|
||
|
||
def update_doc(self, kb_file: KnowledgeFile, docs: List[Document] = [], **kwargs):
|
||
"""
|
||
使用content中的文件更新向量库
|
||
如果指定了docs,则使用自定义docs,并将数据库对应条目标为custom_docs=True
|
||
"""
|
||
if not self.check_embed_model()[0]:
|
||
return False
|
||
|
||
if os.path.exists(kb_file.filepath):
|
||
self.delete_doc(kb_file, **kwargs)
|
||
return self.add_doc(kb_file, docs=docs, **kwargs)
|
||
|
||
def exist_doc(self, file_name: str):
|
||
return file_exists_in_db(
|
||
KnowledgeFile(knowledge_base_name=self.kb_name, filename=file_name)
|
||
)
|
||
|
||
def list_files(self):
|
||
return list_files_from_db(self.kb_name)
|
||
|
||
def count_files(self):
|
||
return count_files_from_db(self.kb_name)
|
||
|
||
def search_docs(
|
||
self,
|
||
query: str,
|
||
top_k: int = Settings.kb_settings.VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = Settings.kb_settings.SCORE_THRESHOLD,
|
||
) -> List[Document]:
|
||
if not self.check_embed_model()[0]:
|
||
return []
|
||
|
||
docs = self.do_search(query, top_k, score_threshold)
|
||
return docs
|
||
|
||
def search_content_internal(self,
|
||
query: str,
|
||
top_k: int,
|
||
)->List[Document]:
|
||
docs = self.searchbyContentInternal(query,top_k)
|
||
return docs
|
||
def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
|
||
return []
|
||
|
||
def del_doc_by_ids(self, ids: List[str]) -> bool:
|
||
raise NotImplementedError
|
||
|
||
def update_doc_by_ids(self, docs: Dict[str, Document]) -> bool:
|
||
"""
|
||
传入参数为: {doc_id: Document, ...}
|
||
如果对应 doc_id 的值为 None,或其 page_content 为空,则删除该文档
|
||
"""
|
||
if not self.check_embed_model()[0]:
|
||
return False
|
||
|
||
self.del_doc_by_ids(list(docs.keys()))
|
||
pending_docs = []
|
||
ids = []
|
||
for _id, doc in docs.items():
|
||
if not doc or not doc.page_content.strip():
|
||
continue
|
||
ids.append(_id)
|
||
pending_docs.append(doc)
|
||
self.do_add_doc(docs=pending_docs, ids=ids)
|
||
return True
|
||
|
||
def list_docs(
|
||
self, file_name: str = None, metadata: Dict = {}
|
||
) -> List[DocumentWithVSId]:
|
||
"""
|
||
通过file_name或metadata检索Document
|
||
"""
|
||
doc_infos = list_docs_from_db(
|
||
kb_name=self.kb_name, file_name=file_name, metadata=metadata
|
||
)
|
||
docs = []
|
||
for x in doc_infos:
|
||
doc_info = self.get_doc_by_ids([x["id"]])[0]
|
||
if doc_info is not None:
|
||
# 处理非空的情况
|
||
doc_with_id = DocumentWithVSId(**{**doc_info.dict(), "id":x["id"]})
|
||
docs.append(doc_with_id)
|
||
else:
|
||
# 处理空的情况
|
||
# 可以选择跳过当前循环迭代或执行其他操作
|
||
pass
|
||
return docs
|
||
|
||
def get_relative_source_path(self, filepath: str):
|
||
"""
|
||
将文件路径转化为相对路径,保证查询时一致
|
||
"""
|
||
relative_path = filepath
|
||
if os.path.isabs(relative_path):
|
||
try:
|
||
relative_path = Path(filepath).relative_to(self.doc_path)
|
||
except Exception as e:
|
||
print(
|
||
f"cannot convert absolute path ({relative_path}) to relative path. error is : {e}"
|
||
)
|
||
|
||
relative_path = str(relative_path.as_posix().strip("/"))
|
||
return relative_path
|
||
|
||
@abstractmethod
|
||
def do_create_kb(self):
|
||
"""
|
||
创建知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@staticmethod
|
||
def list_kbs_type():
|
||
return list(Settings.kb_settings.kbs_config.keys())
|
||
|
||
@classmethod
|
||
def list_kbs(cls):
|
||
return list_kbs_from_db()
|
||
|
||
def exists(self, kb_name: str = None):
|
||
kb_name = kb_name or self.kb_name
|
||
return kb_exists(kb_name)
|
||
|
||
@abstractmethod
|
||
def vs_type(self) -> str:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_init(self):
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_drop_kb(self):
|
||
"""
|
||
删除知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_search(
|
||
self,
|
||
query: str,
|
||
top_k: int,
|
||
score_threshold: float,
|
||
) -> List[Tuple[Document, float]]:
|
||
"""
|
||
搜索知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def searchbyContentInternal(self,
|
||
query: str,
|
||
top_k: int,
|
||
)->List[Tuple[Document, float]]:
|
||
"""
|
||
搜索知识库子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_add_doc(
|
||
self,
|
||
docs: List[Document],
|
||
**kwargs,
|
||
) -> List[Dict]:
|
||
"""
|
||
向知识库添加文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_delete_doc(self, kb_file: KnowledgeFile):
|
||
"""
|
||
从知识库删除文档子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def do_clear_vs(self):
|
||
"""
|
||
从知识库删除全部向量子类实自己逻辑
|
||
"""
|
||
pass
|
||
|
||
|
||
class KBServiceFactory:
|
||
@staticmethod
|
||
def get_service(
|
||
kb_name: str,
|
||
vector_store_type: Union[str, SupportedVSType],
|
||
embed_model: str = get_default_embedding(),
|
||
kb_info: str = None,
|
||
) -> KBService:
|
||
if isinstance(vector_store_type, str):
|
||
vector_store_type = getattr(SupportedVSType, vector_store_type.upper())
|
||
params = {
|
||
"knowledge_base_name": kb_name,
|
||
"embed_model": embed_model,
|
||
"kb_info": kb_info,
|
||
}
|
||
if SupportedVSType.FAISS == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.faiss_kb_service import (
|
||
FaissKBService,
|
||
)
|
||
|
||
return FaissKBService(**params)
|
||
elif SupportedVSType.PG == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.pg_kb_service import (
|
||
PGKBService,
|
||
)
|
||
|
||
return PGKBService(**params)
|
||
elif SupportedVSType.RELYT == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.relyt_kb_service import (
|
||
RelytKBService,
|
||
)
|
||
|
||
return RelytKBService(**params)
|
||
elif SupportedVSType.MILVUS == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.milvus_kb_service import (
|
||
MilvusKBService,
|
||
)
|
||
|
||
return MilvusKBService(**params)
|
||
elif SupportedVSType.ZILLIZ == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.zilliz_kb_service import (
|
||
ZillizKBService,
|
||
)
|
||
|
||
return ZillizKBService(**params)
|
||
elif SupportedVSType.DEFAULT == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.milvus_kb_service import (
|
||
MilvusKBService,
|
||
)
|
||
|
||
return MilvusKBService(
|
||
**params
|
||
) # other milvus parameters are set in model_config.Settings.kb_settings.kbs_config
|
||
elif SupportedVSType.ES == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.es_kb_service import (
|
||
ESKBService,
|
||
)
|
||
|
||
return ESKBService(**params)
|
||
elif SupportedVSType.CHROMADB == vector_store_type:
|
||
from chatchat.server.knowledge_base.kb_service.chromadb_kb_service import (
|
||
ChromaKBService,
|
||
)
|
||
|
||
return ChromaKBService(**params)
|
||
elif (
|
||
SupportedVSType.DEFAULT == vector_store_type
|
||
): # kb_exists of default kbservice is False, to make validation easier.
|
||
from chatchat.server.knowledge_base.kb_service.default_kb_service import (
|
||
DefaultKBService,
|
||
)
|
||
|
||
return DefaultKBService(kb_name)
|
||
|
||
@staticmethod
|
||
def get_service_by_name(kb_name: str) -> KBService:
|
||
_, vs_type, embed_model = load_kb_from_db(kb_name)
|
||
if _ is None: # kb not in db, just return None
|
||
return None
|
||
return KBServiceFactory.get_service(kb_name, vs_type, embed_model)
|
||
|
||
@staticmethod
|
||
def get_default():
|
||
return KBServiceFactory.get_service("default", SupportedVSType.DEFAULT)
|
||
|
||
|
||
def get_kb_details() -> List[Dict]:
|
||
kbs_in_folder = list_kbs_from_folder()
|
||
kbs_in_db: List[KnowledgeBaseSchema] = KBService.list_kbs()
|
||
result = {}
|
||
|
||
for kb in kbs_in_folder:
|
||
result[kb] = {
|
||
"kb_name": kb,
|
||
"vs_type": "",
|
||
"kb_info": "",
|
||
"embed_model": "",
|
||
"file_count": 0,
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
|
||
for kb_detail in kbs_in_db:
|
||
kb_detail = kb_detail.model_dump()
|
||
kb_name = kb_detail["kb_name"]
|
||
kb_detail["in_db"] = True
|
||
if kb_name in result:
|
||
result[kb_name].update(kb_detail)
|
||
else:
|
||
kb_detail["in_folder"] = False
|
||
result[kb_name] = kb_detail
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v["No"] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
def get_kb_file_details(kb_name: str) -> List[Dict]:
|
||
kb = KBServiceFactory.get_service_by_name(kb_name)
|
||
if kb is None:
|
||
return []
|
||
|
||
files_in_folder = list_files_from_folder(kb_name)
|
||
files_in_db = kb.list_files()
|
||
result = {}
|
||
|
||
for doc in files_in_folder:
|
||
result[doc] = {
|
||
"kb_name": kb_name,
|
||
"file_name": doc,
|
||
"file_ext": os.path.splitext(doc)[-1],
|
||
"file_version": 0,
|
||
"document_loader": "",
|
||
"docs_count": 0,
|
||
"text_splitter": "",
|
||
"create_time": None,
|
||
"in_folder": True,
|
||
"in_db": False,
|
||
}
|
||
lower_names = {x.lower(): x for x in result}
|
||
for doc in files_in_db:
|
||
doc_detail = get_file_detail(kb_name, doc)
|
||
if doc_detail:
|
||
doc_detail["in_db"] = True
|
||
if doc.lower() in lower_names:
|
||
result[lower_names[doc.lower()]].update(doc_detail)
|
||
else:
|
||
doc_detail["in_folder"] = False
|
||
result[doc] = doc_detail
|
||
|
||
data = []
|
||
for i, v in enumerate(result.values()):
|
||
v["No"] = i + 1
|
||
data.append(v)
|
||
|
||
return data
|
||
|
||
|
||
def score_threshold_process(score_threshold, k, docs):
|
||
if score_threshold is not None:
|
||
cmp = operator.le
|
||
docs = [
|
||
(doc, similarity)
|
||
for doc, similarity in docs
|
||
if cmp(similarity, score_threshold)
|
||
]
|
||
return docs[:k]
|