Langchain-Chatchat/libs/chatchat-server/chatchat/webui_pages/knowledge_base/knowledge_base.py

456 lines
17 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import time
from typing import Dict, Literal, Tuple
import pandas as pd
import streamlit as st
import streamlit_antd_components as sac
from st_aggrid import AgGrid, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
from streamlit_antd_components.utils import ParseItems
from chatchat.settings import Settings
from chatchat.server.knowledge_base.kb_service.base import (
get_kb_details,
get_kb_file_details,
)
from chatchat.server.knowledge_base.utils import LOADER_DICT, get_file_path
from chatchat.server.utils import get_config_models, get_default_embedding
from chatchat.webui_pages.utils import *
# SENTENCE_SIZE = 100
cell_renderer = JsCode(
"""function(params) {if(params.value==true){return ''}else{return '×'}}"""
)
def config_aggrid(
df: pd.DataFrame,
columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=40)
for (col, header), kw in columns.items():
gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(
selection_mode=selection_mode,
use_checkbox=use_checkbox,
pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
gb.configure_pagination(
enabled=True, paginationAutoPageSize=False, paginationPageSize=10
)
return gb
def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
"""
check whether a doc file exists in local knowledge base folder.
return the file's name and path if it exists.
"""
if selected_rows:
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
if os.path.isfile(file_path):
return file_name, file_path
return "", ""
def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
try:
kb_list = {x["kb_name"]: x for x in get_kb_details()}
except Exception as e:
st.error(
"获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。"
)
st.stop()
kb_names = list(kb_list.keys())
if (
"selected_kb_name" in st.session_state
and st.session_state["selected_kb_name"] in kb_names
):
selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
else:
selected_kb_index = 0
if "selected_kb_info" not in st.session_state:
st.session_state["selected_kb_info"] = ""
def format_selected_kb(kb_name: str) -> str:
if kb := kb_list.get(kb_name):
return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
else:
return kb_name
selected_kb = st.selectbox(
"请选择或新建知识库:",
kb_names + ["新建知识库"],
format_func=format_selected_kb,
index=selected_kb_index,
)
if selected_kb == "新建知识库":
with st.form("新建知识库"):
kb_name = st.text_input(
"新建知识库名称",
placeholder="新知识库名称,不支持中文命名",
key="kb_name",
)
kb_info = st.text_input(
"知识库简介",
placeholder="知识库简介方便Agent查找",
key="kb_info",
)
col0, _ = st.columns([3, 1])
vs_types = list(Settings.kb_settings.kbs_config.keys())
vs_type = col0.selectbox(
"向量库类型",
vs_types,
index=vs_types.index(Settings.kb_settings.DEFAULT_VS_TYPE),
key="vs_type",
)
col1, _ = st.columns([3, 1])
with col1:
embed_models = list(get_config_models(model_type="embed"))
index = 0
if get_default_embedding() in embed_models:
index = embed_models.index(get_default_embedding())
embed_model = st.selectbox("Embeddings模型", embed_models, index)
submit_create_kb = st.form_submit_button(
"新建",
# disabled=not bool(kb_name),
use_container_width=True,
)
if submit_create_kb:
if not kb_name or not kb_name.strip():
st.error(f"知识库名称不能为空!")
elif kb_name in kb_list:
st.error(f"名为 {kb_name} 的知识库已经存在!")
elif embed_model is None:
st.error(f"请选择Embedding模型")
else:
ret = api.create_knowledge_base(
knowledge_base_name=kb_name,
vector_store_type=vs_type,
embed_model=embed_model,
)
st.toast(ret.get("msg", " "))
st.session_state["selected_kb_name"] = kb_name
st.session_state["selected_kb_info"] = kb_info
st.rerun()
elif selected_kb:
kb = selected_kb
st.session_state["selected_kb_info"] = kb_list[kb]["kb_info"]
# 上传文件
files = st.file_uploader(
"上传知识文件:",
[i for ls in LOADER_DICT.values() for i in ls],
accept_multiple_files=True,
)
kb_info = st.text_area(
"请输入知识库介绍:",
value=st.session_state["selected_kb_info"],
max_chars=None,
key=None,
help=None,
on_change=None,
args=None,
kwargs=None,
)
if kb_info != st.session_state["selected_kb_info"]:
st.session_state["selected_kb_info"] = kb_info
api.update_kb_info(kb, kb_info)
# with st.sidebar:
with st.expander(
"文件处理配置",
expanded=True,
):
cols = st.columns(3)
chunk_size = cols[0].number_input("单段文本最大长度:", 1, 1000, Settings.kb_settings.CHUNK_SIZE)
chunk_overlap = cols[1].number_input(
"相邻文本重合长度:", 0, chunk_size, Settings.kb_settings.OVERLAP_SIZE
)
cols[2].write("")
cols[2].write("")
zh_title_enhance = cols[2].checkbox("开启中文标题加强", Settings.kb_settings.ZH_TITLE_ENHANCE)
if st.button(
"添加文件到知识库",
# use_container_width=True,
disabled=len(files) == 0,
):
ret = api.upload_kb_docs(
files,
knowledge_base_name=kb,
override=True,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance,
)
if msg := check_success_msg(ret):
st.toast(msg, icon="")
elif msg := check_error_msg(ret):
st.toast(msg, icon="")
st.divider()
# 知识库详情
# st.info("请选择文件,点击按钮进行操作。")
doc_details = pd.DataFrame(get_kb_file_details(kb))
selected_rows = []
if not len(doc_details):
st.info(f"知识库 `{kb}` 中暂无文件")
else:
st.write(f"知识库 `{kb}` 中已有文件:")
st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
doc_details.drop(columns=["kb_name"], inplace=True)
doc_details = doc_details[
[
"No",
"file_name",
"document_loader",
"text_splitter",
"docs_count",
"in_folder",
"in_db",
]
]
doc_details["in_folder"] = (
doc_details["in_folder"].replace(True, "").replace(False, "×")
)
doc_details["in_db"] = (
doc_details["in_db"].replace(True, "").replace(False, "×")
)
gb = config_aggrid(
doc_details,
{
("No", "序号"): {},
("file_name", "文档名称"): {},
# ("file_ext", "文档类型"): {},
# ("file_version", "文档版本"): {},
("document_loader", "文档加载器"): {},
("docs_count", "文档数量"): {},
("text_splitter", "分词器"): {},
# ("create_time", "创建时间"): {},
("in_folder", "源文件"): {},
("in_db", "向量库"): {},
},
"multiple",
)
doc_grid = AgGrid(
doc_details,
gb.build(),
columns_auto_size_mode="FIT_CONTENTS",
theme="alpine",
custom_css={
"#gridToolBar": {"display": "none"},
},
allow_unsafe_jscode=True,
enable_enterprise_modules=False,
)
selected_rows = doc_grid.get("selected_rows")
if selected_rows is None:
selected_rows = []
else:
selected_rows = selected_rows.to_dict("records")
cols = st.columns(4)
file_name, file_path = file_exists(kb, selected_rows)
if file_path:
with open(file_path, "rb") as fp:
cols[0].download_button(
"下载选中文档",
fp,
file_name=file_name,
use_container_width=True,
)
else:
cols[0].download_button(
"下载选中文档",
"",
disabled=True,
use_container_width=True,
)
st.write()
# 将文件分词并加载到向量库中
if cols[1].button(
"重新添加至向量库"
if selected_rows and (pd.DataFrame(selected_rows)["in_db"]).any()
else "添加至向量库",
disabled=not file_exists(kb, selected_rows)[0],
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.update_kb_docs(
kb,
file_names=file_names,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance,
)
st.rerun()
# 将文件从向量库中删除,但不删除文件本身。
if cols[2].button(
"从向量库删除",
disabled=not (selected_rows and selected_rows[0]["in_db"]),
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names)
st.rerun()
if cols[3].button(
"从知识库中删除",
type="primary",
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names, delete_content=True)
st.rerun()
st.divider()
cols = st.columns(3)
if cols[0].button(
"依据源文件重建向量库",
help="无需上传文件通过其它方式将文档拷贝到对应知识库content目录下点击本按钮即可重建知识库。",
use_container_width=True,
type="primary",
):
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(
kb,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance,
):
if msg := check_error_msg(d):
st.toast(msg)
else:
empty.progress(d["finished"] / d["total"], d["msg"])
st.rerun()
if cols[2].button(
"删除知识库",
use_container_width=True,
):
ret = api.delete_knowledge_base(kb)
st.toast(ret.get("msg", " "))
time.sleep(1)
st.rerun()
with st.sidebar:
keyword = st.text_input("查询关键字")
top_k = st.slider("匹配条数", 1, 100, 3)
st.write("文件内文档列表。双击进行修改,在删除列填入 Y 可删除对应行。")
docs = []
df = pd.DataFrame([], columns=["seq", "id", "content", "source"])
if selected_rows:
file_name = selected_rows[0]["file_name"]
docs = api.search_kb_docs(
knowledge_base_name=selected_kb, file_name=file_name
)
data = [
{
"seq": i + 1,
"id": x["id"],
"page_content": x["page_content"],
"source": x["metadata"].get("source"),
"type": x["type"],
"metadata": json.dumps(x["metadata"], ensure_ascii=False),
"to_del": "",
}
for i, x in enumerate(docs)
]
df = pd.DataFrame(data)
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_columns(["id", "source", "type", "metadata"], hide=True)
gb.configure_column("seq", "No.", width=50)
gb.configure_column(
"page_content",
"内容",
editable=True,
autoHeight=True,
wrapText=True,
flex=1,
cellEditor="agLargeTextCellEditor",
cellEditorPopup=True,
autoWidth=True,
cellEditorParams= { "maxLength": 1000}
)
gb.configure_column(
"to_del",
"删除",
editable=True,
width=50,
wrapHeaderText=True,
cellEditor="agTextCellEditor",
cellRender="agTextCellRenderer",
)
# 启用分页
gb.configure_pagination(
enabled=True, paginationAutoPageSize=False, paginationPageSize=10
)
gb.configure_selection()
edit_docs = AgGrid(df, gb.build(), fit_columns_on_grid_load=True)
if st.button("保存更改"):
origin_docs = {
x["id"]: {
"page_content": x["page_content"],
"type": x["type"],
"metadata": x["metadata"],
}
for x in docs
}
changed_docs = []
for index, row in edit_docs.data.iterrows():
origin_doc = origin_docs[row["id"]]
# if row["page_content"] != origin_doc["page_content"]:
if row["to_del"] not in ["Y", "y", 1]:
changed_docs.append(
{
"page_content": row["page_content"],
"type": row["type"],
"metadata": json.loads(row["metadata"]),
}
)
elif row["to_del"] in ["Y", "y", 1]:
print(f"""删除的文档id,row[seq]:{row["seq"]}""")
print(f"操作后的文档一共有:{len(changed_docs)}")
if changed_docs:
print(f"操作后的文档一共有:{len(changed_docs)}")
if api.update_kb_docs(
knowledge_base_name=selected_kb,
file_names=[file_name],
docs={file_name: changed_docs},
):
st.toast("更新文档成功")
else:
st.toast("更新文档失败")
else:
print(f"没有进行文档更新操作")