117 lines
3.3 KiB
Python
117 lines
3.3 KiB
Python
import cv2
|
||
import numpy as np
|
||
import os
|
||
|
||
import numpy as np
|
||
import cv2
|
||
import matplotlib.pyplot as plt
|
||
|
||
|
||
# # 创建一个空白图像(假设大小为100x100)
|
||
# height, width = 100, 100
|
||
# segmentation_result = np.zeros((height, width), dtype=np.uint8)
|
||
|
||
# # 创建一些分割区域
|
||
# segmentation_result[10:30, 10:30] = 50 # 区域1
|
||
# segmentation_result[40:60, 40:60] = 100 # 区域2
|
||
# segmentation_result[70:90, 70:90] = 150 # 区域3
|
||
# segmentation_result[20:50, 70:90] = 200 # 区域4
|
||
|
||
# # 保存图像
|
||
# cv2.imwrite('segmentation_result.png', segmentation_result)
|
||
|
||
# segmentation_result = cv2.imread('segmentation_result.png', cv2.IMREAD_GRAYSCALE)
|
||
|
||
# height, width = segmentation_result.shape
|
||
|
||
# fig = plt.figure()
|
||
# ax = fig.add_subplot(111, projection='3d')
|
||
|
||
# unique_labels = np.unique(segmentation_result)
|
||
# heights = np.linspace(1, 10, len(unique_labels)) # 高度范围从1到10,可以根据需要调整
|
||
|
||
# for i, label in enumerate(unique_labels):
|
||
# mask = (segmentation_result == label)
|
||
# x, y = np.meshgrid(np.arange(width), np.arange(height))
|
||
# x = x[mask]
|
||
# y = y[mask]
|
||
# z = np.zeros_like(x)
|
||
# dz = np.full_like(x, heights[i])
|
||
# ax.bar3d(x, y, z, 1, 1, dz, shade=True)
|
||
|
||
# ax.set_xlabel('X axis')
|
||
# ax.set_ylabel('Y axis')
|
||
# ax.set_zlabel('Height')
|
||
|
||
# plt.show()
|
||
|
||
|
||
|
||
def categorize_pixels(image_path, output_dir):
|
||
# 读取图像
|
||
image = cv2.imread(image_path)
|
||
if image is None:
|
||
print("Error: Unable to read image.")
|
||
return
|
||
|
||
# 创建输出目录
|
||
if not os.path.exists(output_dir):
|
||
os.makedirs(output_dir)
|
||
|
||
# 获取图像的高度和宽度
|
||
height, width, _ = image.shape
|
||
|
||
# 创建类别掩码
|
||
categories = np.zeros((height, width), dtype=np.uint8)
|
||
|
||
# 遍历每个像素并分类
|
||
for y in range(height):
|
||
for x in range(width):
|
||
r, g, b = image[y, x]
|
||
rgb_sum = int(r) + int(g) + int(b)
|
||
# if b != 0:
|
||
# continue
|
||
if rgb_sum <= 0: # label 1
|
||
categories[y, x] = 50
|
||
elif rgb_sum <= 120: # label 2
|
||
categories[y, x] = 100
|
||
elif rgb_sum < 200: # label 3
|
||
categories[y, x] = 150
|
||
else: # label 4
|
||
categories[y, x] = 200
|
||
cv2.imwrite("deeptmp.png",categories)
|
||
segmentation_result = cv2.imread("./deeptmp.png", cv2.IMREAD_GRAYSCALE)
|
||
|
||
height, width = segmentation_result.shape
|
||
|
||
print("正在生成三维图...")
|
||
fig = plt.figure()
|
||
ax = fig.add_subplot(111, projection='3d')
|
||
|
||
unique_labels = np.unique(segmentation_result)
|
||
heights = [10, 5, 3, 1]
|
||
#heights = np.linspace(10, 1, len(unique_labels)) # 高度范围从1到10,可以根据需要调整
|
||
|
||
for i, label in enumerate(unique_labels):
|
||
mask = (segmentation_result == label)
|
||
x, y = np.meshgrid(np.arange(width), np.arange(height))
|
||
x = x[mask]
|
||
y = y[mask]
|
||
z = np.zeros_like(x)
|
||
dz = np.full_like(x, heights[i])
|
||
ax.bar3d(x, y, z, 1, 1, dz, shade=True)
|
||
|
||
ax.set_xlabel('X axis')
|
||
ax.set_ylabel('Y axis')
|
||
ax.set_zlabel('Height')
|
||
|
||
plt.show()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
image_path = "./fill.png" # 替换为你的图像路径
|
||
output_dir = "./"
|
||
categorize_pixels(image_path, output_dir)
|
||
print(f"Pixel categorization complete. Results saved in {output_dir}")
|
||
|