|
|
||
|---|---|---|
| .. | ||
| __pycache__ | ||
| checkpoints | ||
| examples | ||
| image | ||
| models | ||
| uploads/photos | ||
| API_USAGE.md | ||
| Dockerfile | ||
| FEATURE_DIMENSION.md | ||
| PROJECT_SUMMARY.md | ||
| README.md | ||
| README_API.md | ||
| STORAGE_ANALYSIS.md | ||
| USER_GUIDE.md | ||
| admin.html | ||
| check_model_dim.py | ||
| config.yaml | ||
| face_feature_extractor.py | ||
| face_recognition.db | ||
| face_recognition_example.py | ||
| feature_server.py | ||
| requirements.txt | ||
| test_sync_direct.py | ||
README.md
人脸特征提取模块 API 文档
概述
face_feature_extractor.py 是一个独立的人脸特征提取模块,输入图像,输出质量评估合格的特征值。
主要功能
- ✅ 人脸检测和关键点检测
- ✅ 人脸对齐和预处理
- ✅ 多维度质量评估(亮度、清晰度、姿态、分辨率)
- ✅ 特征提取和标准化
- ✅ 质量过滤,只返回合格特征
- ✅ 支持单人和多人脸处理
- ✅ 可配置的质量阈值
快速开始
安装依赖
pip install opencv-python numpy onnxruntime
基础使用
import cv2
from face_feature_extractor import extract_face_feature
# 读取图像
image = cv2.imread("person.jpg")
# 提取特征(自动质量过滤)
feature = extract_face_feature(image)
if feature is not None:
print(f"特征维度: {feature.shape}")
print(f"特征范数: {np.linalg.norm(feature):.6f}")
else:
print("特征提取失败(质量检查未通过或未检测到人脸)")
核心 API
FaceFeatureExtractor 类
构造函数
FaceFeatureExtractor(config: Optional[Dict] = None)
参数:
config: 可选配置字典,如果为None则使用默认配置
示例:
# 使用默认配置
extractor = FaceFeatureExtractor()
# 使用自定义配置
config = {
"detection": {"score_threshold": 0.5},
"quality": {"strict_mode": False}
}
extractor = FaceFeatureExtractor(config)
主要方法
1. extract_single_feature()
extract_single_feature(image: np.ndarray) -> Optional[np.ndarray]
提取单个人脸特征(质量过滤后)
参数:
image: 输入图像,BGR格式,numpy.ndarray
返回:
np.ndarray: 质量合格的特征向量None: 未检测到人脸或质量不合格
示例:
feature = extractor.extract_single_feature(image)
if feature is not None:
print(f"成功提取特征: {feature.shape}")
2. extract_multiple_features()
extract_multiple_features(image: np.ndarray) -> List[np.ndarray]
提取多个人脸特征
参数:
image: 输入图像,BGR格式
返回:
List[np.ndarray]: 质量合格的特征向量列表
示例:
features = extractor.extract_multiple_features(image)
print(f"检测到 {len(features)} 个质量合格的人脸")
3. extract_features()
extract_features(image: np.ndarray,
return_all_faces: bool = False,
quality_filter: bool = True) -> FeatureExtractionResult
详细特征提取(包含所有信息)
参数:
image: 输入图像return_all_faces: 是否返回所有人脸(包括质量不合格的)quality_filter: 是否进行质量过滤
返回:
FeatureExtractionResult: 包含人脸信息、质量评分、处理时间等
示例:
result = extractor.extract_features(image, return_all_faces=True, quality_filter=False)
print(f"检测到 {len(result.faces)} 个人脸")
for face in result.faces:
print(f"置信度: {face.confidence:.3f}")
print(f"质量合格: {face.quality_scores['overall']['passed']}")
4. get_statistics()
get_statistics() -> Dict[str, Any]
获取模块统计信息
返回:
Dict: 包含处理次数、成功率、平均处理时间等统计
便捷函数
extract_face_feature()
extract_face_feature(image: np.ndarray, config: Optional[Dict] = None) -> Optional[np.ndarray]
提取单个人脸特征的便捷函数
extract_face_features()
extract_face_features(image: np.ndarray, config: Optional[Dict] = None) -> List[np.ndarray]
提取多个人脸特征的便捷函数
配置选项
默认配置结构
config = {
"model_paths": {
"detector": "./checkpoints/faceboxesv2-640x640.onnx",
"landmk1": "./checkpoints/face_landmarker_pts5_net1.onnx",
"landmk2": "./checkpoints/face_landmarker_pts5_net2.onnx",
"recognizer": "./checkpoints/face_recognizer.onnx",
"rotifier": "./checkpoints/model_gray_mobilenetv2_rotcls.onnx",
"num_threads": 4
},
"detection": {
"score_threshold": 0.35, # 检测置信度阈值
"iou_threshold": 0.45, # NMS IoU阈值
"max_faces": 1 # 最大处理人脸数
},
"quality": {
"brightness": {
"v0": 69.0, "v1": 70.0, "v2": 230.0, "v3": 231.0
},
"resolution": {
"height": 112, "width": 112
},
"clarity": {
"low_thrd": 0.10, "high_thrd": 0.20
},
"pose": {
"yaw_thrd": 30.0, "pitch_thrd": 25.0,
"var_onnx_path": "./checkpoints/fsanet-var.onnx",
"conv_onnx_path": "./checkpoints/fsanet-conv.onnx"
},
"strict_mode": True # 严格模式,所有质量检查都通过
}
}
质量评估说明
模块会对每个人脸进行以下质量检查:
- 亮度检查: 确保人脸亮度在合理范围内
- 分辨率检查: 确保人脸分辨率足够高
- 清晰度检查: 确保图像清晰度良好
- 姿态检查: 确保人脸姿态正对摄像头
在严格模式下,只有所有检查都通过才会返回特征。
数据结构
FaceInfo
@dataclass
class FaceInfo:
bbox: Tuple[float, float, float, float] # 人脸边界框
landmarks: List[Tuple[float, float]] # 5个关键点
confidence: float # 检测置信度
quality_scores: Dict[str, Any] # 质量评分
feature: Optional[np.ndarray] # 特征向量
FeatureExtractionResult
@dataclass
class FeatureExtractionResult:
success: bool # 是否成功
faces: List[FaceInfo] # 检测到的人脸列表
processing_time: float # 处理时间
error_message: Optional[str] # 错误信息
使用示例
示例1: 单人注册
import cv2
from face_feature_extractor import FaceFeatureExtractor
# 初始化
extractor = FaceFeatureExtractor()
# 读取图像
image = cv2.imread("user_photo.jpg")
# 提取特征
feature = extractor.extract_single_feature(image)
if feature is not None:
# 保存特征到数据库
save_feature_to_database(user_id="user123", feature=feature)
print("用户注册成功")
else:
print("注册失败,请使用质量更好的照片")
示例2: 人脸识别
import cv2
import numpy as np
from face_feature_extractor import FaceFeatureExtractor
def recognize_user(image):
extractor = FaceFeatureExtractor()
# 提取待识别人脸特征
unknown_feature = extractor.extract_single_feature(image)
if unknown_feature is None:
return None
# 从数据库加载已知特征
known_features = load_features_from_database()
# 计算相似度
best_match = None
best_similarity = 0.0
for user_id, known_feature in known_features.items():
similarity = np.dot(unknown_feature, known_feature)
if similarity > best_similarity and similarity > 0.7:
best_similarity = similarity
best_match = user_id
return best_match, best_similarity
# 使用
image = cv2.imread("test_photo.jpg")
user_id, similarity = recognize_user(image)
if user_id:
print(f"识别成功: {user_id}, 相似度: {similarity:.6f}")
else:
print("识别失败")
示例3: 批量处理
import os
import cv2
from face_feature_extractor import FaceFeatureExtractor
def batch_process_images(image_dir):
extractor = FaceFeatureExtractor()
results = {}
for filename in os.listdir(image_dir):
if filename.lower().endswith(('.jpg', '.jpeg', '.png')):
image_path = os.path.join(image_dir, filename)
image = cv2.imread(image_path)
if image is not None:
feature = extractor.extract_single_feature(image)
if feature is not None:
results[filename] = feature
print(f"✓ {filename}: 特征提取成功")
else:
print(f"✗ {filename}: 质量不合格")
return results
# 使用
features = batch_process_images("./photos/")
print(f"成功处理 {len(features)} 张图像")
性能优化建议
- 复用实例: 对于批量处理,复用
FaceFeatureExtractor实例 - 调整线程数: 根据硬件调整
num_threads参数 - 质量阈值: 根据应用场景调整质量阈值
- 图像预处理: 确保输入图像质量良好
错误处理
常见错误及解决方案
-
未检测到人脸
- 确保图像中包含清晰的人脸
- 调整检测阈值
score_threshold
-
质量检查未通过
- 使用更好的光照条件
- 确保人脸姿态正对摄像头
- 调整质量阈值或关闭严格模式
-
模型加载失败
- 检查模型文件路径是否正确
- 确保模型文件完整且未损坏
-
处理速度慢
- 减少
num_threads参数 - 降低输入图像分辨率
- 使用 GPU 版本的 ONNX Runtime
- 减少
更新日志
v1.0.0
- 初始版本发布
- 支持基础特征提取功能
- 集成质量评估系统
- 提供完整的 API 接口
技术支持
如有问题或建议,请查看:
- 测试代码:
test_feature_extractor.py - 使用示例:
feature_extractor_examples.py - 错误日志: 模块会输出详细的调试信息