test: 移除快速测试 API 和人脸检测测试脚本及所有相关测试图片。

This commit is contained in:
Yuanzq 2026-02-11 17:46:47 +08:00
parent b5d0a66249
commit 4230e62f0a
8 changed files with 0 additions and 307 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 275 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 380 KiB

View File

@ -1,103 +0,0 @@
import requests
import json
import cv2
import numpy as np
import os
# 配置服务地址
JAVA_BACKEND_URL = "http://localhost:18080"
PYTHON_ALGO_URL = "http://localhost:18000"
def create_test_image(filename="test_face.jpg"):
"""创建一张简单的测试图片(如果不存在)"""
if not os.path.exists(filename):
print(f"Creating test image: {filename}...")
# 创建一个 640x480 的黑色图像
img = np.zeros((480, 640, 3), np.uint8)
# 画一个简单的圆代表"脸" (虽然检测不到,但可以测试文件上传流程)
cv2.circle(img, (320, 240), 100, (255, 255, 255), -1)
cv2.imwrite(filename, img)
return filename
def test_python_health():
"""测试 Python 算法服务健康检查"""
url = f"{PYTHON_ALGO_URL}/health"
print(f"\n[Testing] Python Algorithm Service Health ({url})...")
try:
response = requests.get(url, timeout=5)
if response.status_code == 200:
print(f"✅ Success: {response.json()}")
else:
print(f"❌ Failed: Status {response.status_code}, Response: {response.text}")
except requests.exceptions.ConnectionError:
print("❌ Failed: Connection refused. Is the service running on port 18000?")
except Exception as e:
print(f"❌ Error: {e}")
def test_extract_feature(image_path):
"""测试人脸特征提取接口"""
url = f"{PYTHON_ALGO_URL}/api/extract_feature"
print(f"\n[Testing] Face Feature Extraction ({url})...")
if not os.path.exists(image_path):
print("❌ Error: Test image not found.")
return
try:
with open(image_path, 'rb') as f:
files = {'image': f}
response = requests.post(url, files=files, timeout=10)
if response.status_code == 200:
result = response.json()
if result.get('success'):
dim = result.get('feature_dim')
print(f"✅ Success: Feature extracted. Dimension: {dim}")
else:
# 预期内失败,因为我们的假脸可能过不了检测,但这证明接口通了
print(f"⚠️ Service Reachable (Logic Result): {result.get('message')}")
else:
print(f"❌ Failed: Status {response.status_code}, Response: {response.text}")
except requests.exceptions.ConnectionError:
print("❌ Failed: Connection refused.")
except Exception as e:
print(f"❌ Error: {e}")
def test_java_group_list():
"""测试 Java 后端分组列表接口"""
url = f"{JAVA_BACKEND_URL}/api/groups/list"
print(f"\n[Testing] Java Backend Group List ({url})...")
try:
response = requests.get(url, timeout=5)
if response.status_code == 200:
data = response.json()
if data.get('code') == 200:
print(f"✅ Success: Retrieved {len(data.get('data', []))} groups.")
print(f" Response: {json.dumps(data, ensure_ascii=False)}")
else:
print(f"❌ Functional Error: {data}")
else:
print(f"❌ Failed: Status {response.status_code}, Response: {response.text}")
except requests.exceptions.ConnectionError:
print("❌ Failed: Connection refused. Is the service running on port 18080?")
except Exception as e:
print(f"❌ Error: {e}")
if __name__ == "__main__":
print("=== Face Recognition System Quick Test ===")
# 1. 准备测试图片
test_img = create_test_image()
# 2. 测试算法服务
test_python_health()
test_extract_feature(test_img)
# 3. 测试Java后端
test_java_group_list()
print("\n=== Test Finished ===")
# 清理生成的测试图 (可选,这里保留以便用户查看)
# if os.path.exists(test_img):
# os.remove(test_img)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.8 MiB

View File

@ -1,126 +0,0 @@
import requests
import cv2
import numpy as np
import os
import json
import argparse
import sys
# 配置服务地址
PYTHON_ALGO_URL = "http://192.168.0.37:18000"
def get_default_image_path():
"""获取一个默认存在的测试图片路径"""
# 尝试找一个存在的真实图片
potential_paths = [
r"C:\Users\24830\Desktop\人脸.jpg",
]
for path in potential_paths:
if os.path.exists(path):
return path
return None
def detect_and_draw(image_path, expand_scale=0.0):
url = f"{PYTHON_ALGO_URL}/api/detect_face"
print(f"\n[Processing] Image: {image_path}")
print(f"[API URL] {url}")
print(f"[Expand Scale] {expand_scale}")
if not os.path.exists(image_path):
print(f"❌ Error: Image file not found: {image_path}")
return
try:
# 1. 准备发送请求
# 读取图片用于显示/画框
img_array = np.fromfile(image_path, dtype=np.uint8)
original_img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
if original_img is None:
print(f"❌ Error: Failed to read image using opencv: {image_path}")
return
# 2. 调用API
data = {'expand_scale': expand_scale}
with open(image_path, 'rb') as f:
files = {'image': f}
# 注意: 使用 data=data 发送表单数据,而不是 params=params (查询参数)
response = requests.post(url, files=files, data=data, timeout=10)
if response.status_code != 200:
print(f"❌ Failed: Status {response.status_code}, Response: {response.text}")
return
result = response.json()
print("\n=== API Response ===")
print(json.dumps(result, indent=2))
# 3. 处理结果并画图
if result.get('success'):
faces = result.get('faces', [])
count = len(faces)
print(f"\n✅ Success: Detected {count} faces.")
# 创建副本用于画图
draw_img = original_img.copy()
for i, face in enumerate(faces):
x1 = int(face['x1'])
y1 = int(face['y1'])
x2 = int(face['x2'])
y2 = int(face['y2'])
score = face['score']
# 画矩形框
# 颜色 (B, G, R) - 绿色
color = (0, 255, 0)
thickness = 2
cv2.rectangle(draw_img, (x1, y1), (x2, y2), color, thickness)
# 写文字
label = f"Face {i+1}: {score:.2f}"
cv2.putText(draw_img, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
print(f" - Face {i+1}: Box({x1}, {y1}, {x2}, {y2}), Score: {score:.4f}")
# 保存裁剪的人脸图观察效果
face_crop = original_img[y1:y2, x1:x2]
if face_crop.size > 0:
crop_filename = f"face_crop_{i+1}_scale_{expand_scale}.jpg"
cv2.imencode('.jpg', face_crop)[1].tofile(crop_filename)
print(f" Saved crop: {crop_filename}")
# 4. 保存结果图
output_filename = f"result_detected_scale_{expand_scale}.jpg"
cv2.imencode('.jpg', draw_img)[1].tofile(output_filename)
print(f"\n✅ Result image saved to: {os.path.abspath(output_filename)}")
else:
print(f"⚠️ API logic returned failure: {result.get('message')}")
except Exception as e:
print(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Face Detection API Test Script')
parser.add_argument('image_path', nargs='?', help='Path to the image file')
parser.add_argument('--scale', type=float, default=0.6, help='Expand scale (default: 0.0)')
args = parser.parse_args()
target_path = args.image_path
if not target_path:
default_path = get_default_image_path()
if default_path:
print(f"No image path provided, using default found: {default_path}")
target_path = default_path
else:
print("Usage: python test_detect_face.py <path_to_image> [--scale 0.3]")
print("Error: No image path provided and no default test image found.")
sys.exit(1)
detect_and_draw(target_path, args.scale)

View File

@ -1,78 +0,0 @@
import requests
import json
import os
# 配置
BASE_URL = "http://localhost:18080/api"
GROUP_NAME = "TestGroup_Verify"
USER_NAME = "DuplicateTestUser"
TEST_IMG = "verify_face.jpg"
def create_test_image():
if not os.path.exists(TEST_IMG):
# 创建一个简单的dummy文件
with open(TEST_IMG, 'wb') as f:
f.write(b'\xFF\xD8\xFF\xE0' + b'\x00' * 1000) # Fake JPG header
return TEST_IMG
def run_verification():
print("=== 开始验证 ===")
# 1. 创建测试分组
print("\n1. 创建分组...")
resp = requests.post(f"{BASE_URL}/groups/add", json={"name": GROUP_NAME})
if resp.status_code == 200 and resp.json()['code'] == 200:
group_id = resp.json()['data']['id']
print(f"✅ 分组创建成功 ID: {group_id}")
else:
print(f"❌ 分组创建失败: {resp.text}")
return
# 准备图片
create_test_image()
files = {'photo': open(TEST_IMG, 'rb')}
# 2. 添加用户 (第一次)
print("\n2. 添加用户 (预期成功)...")
data = {"name": USER_NAME, "groupId": group_id}
# Re-open file for each request
resp = requests.post(f"{BASE_URL}/users/add", data=data, files={'photo': open(TEST_IMG, 'rb')})
if resp.status_code == 200 and resp.json()['code'] == 200:
print(f"✅ 用户创建成功")
else:
# 如果是因为测试图片无法提取特征而失败,也是预期的(说明代码跑到了特征提取那一步)
# 但我们主要验证重名逻辑,所以这里假设如果失败是因为重名则是有问题,如果是因为特征提取则是环境问题
print(f"⚠️ 用户创建返回: {resp.json().get('msg')}")
# 3. 添加同名用户 (预期失败)
print("\n3. 再次添加同名用户 (预期被拦截)...")
resp = requests.post(f"{BASE_URL}/users/add", data=data, files={'photo': open(TEST_IMG, 'rb')})
res_json = resp.json()
if res_json.get('code') != 200 and "已存在" in str(res_json.get('msg')):
print(f"✅ 成功拦截重名用户: {res_json.get('msg')}")
else:
print(f"❌ 拦截失败或错误信息不匹配: {resp.text}")
# 4. 测试搜索接口
print("\n4. 测试人脸搜索接口...")
try:
resp = requests.post(f"{BASE_URL}/users/search", data={"groupId": group_id}, files={'photo': open(TEST_IMG, 'rb')})
if resp.status_code == 200:
print(f"✅ 接口调用成功: {resp.json()}")
elif resp.status_code == 404:
print(f"✅ 接口调用成功 (未找到匹配 - 符合预期): {resp.json()}")
else:
print(f"❌ 接口调用异常: {resp.status_code} - {resp.text}")
except Exception as e:
print(f"❌ 请求异常: {e}")
print("\n=== 验证结束 ===")
if __name__ == "__main__":
try:
run_verification()
except Exception as e:
print(f"Fatal Error: {e}")