feat: 新增人脸检测API和人脸检测测试脚本,并更新 API 文档。

This commit is contained in:
Yuanzq 2026-02-11 11:21:19 +08:00
parent e0af18b363
commit b5d0a66249
8 changed files with 251 additions and 1 deletions

View File

@ -222,3 +222,39 @@
* **接口地址**: `/health`
* **请求方式**: `GET`
* **返回结果**: `{"status": "healthy", "service": "Face Feature Extractor"}`
### 2.3 人脸检测 (获取坐标)
* **接口地址**: `/api/detect_face`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| image | File | 是 | 图片文件 |
| expand_scale | Float | 否 | 扩充比例,默认 0.0。例如 0.3 表示长宽各扩充 30% |
* **返回结果**:
> **坐标说明**:
> * `x1`, `y1`: 人脸检测框 **左上角** 的像素坐标。
> * `x2`, `y2`: 人脸检测框 **右下角** 的像素坐标。
> * `score`: 检测置信度 (0-1之间)。
> * **注意**: 即使设置了 `expand_scale`,返回的坐标也会被限制在图片边界内 (Clip to bounds)。
```json
{
"success": true,
"message": "Success",
"faces": [
{
"x1": 100.0,
"y1": 50.0,
"x2": 200.0,
"y2": 150.0,
"score": 0.98
}
],
"processing_time": 0.02
}
```

View File

@ -5,7 +5,7 @@
"""
import uvicorn
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
@ -118,6 +118,94 @@ async def extract_feature(image: UploadFile = File(...)):
message=f"Server error: {str(e)}"
)
# 新增人脸检测响应模型
class FaceRect(BaseModel):
x1: float
y1: float
x2: float
y2: float
score: float
class DetectFaceResponse(BaseModel):
success: bool
message: str
faces: List[FaceRect] = []
processing_time: Optional[float] = None
@app.post("/api/detect_face", response_model=DetectFaceResponse)
async def detect_face(image: UploadFile = File(...), expand_scale: float = Form(0.0)):
"""
人脸检测接口
输入: 图片文件, 扩充比例(expand_scale)
输出: 人脸坐标列表 (x1, y1, x2, y2)
"""
import time
start_time = time.time()
try:
img = decode_image(image)
if img is None:
raise HTTPException(status_code=400, detail="Invalid image file")
# 获取图片尺寸用于坐标截断
h_img, w_img = img.shape[:2]
ext = get_extractor()
# 直接调用检测器,不进行旋转校正,保证坐标对应原图
boxes = ext.detect_faces(img)
face_rects = []
if boxes:
for box in boxes:
# 原始坐标
x1 = float(box.x1)
y1 = float(box.y1)
x2 = float(box.x2)
y2 = float(box.y2)
# 应用扩充逻辑 (如果 expand_scale > 0)
if expand_scale > 0:
w = x2 - x1
h = y2 - y1
cx = x1 + w / 2
cy = y1 + h / 2
new_w = w * (1 + expand_scale)
new_h = h * (1 + expand_scale)
x1 = cx - new_w / 2
y1 = cy - new_h / 2
x2 = cx + new_w / 2
y2 = cy + new_h / 2
# 强制限制坐标在图片范围内,防止出现负数或越界
x1 = max(0.0, min(x1, float(w_img)))
y1 = max(0.0, min(y1, float(h_img)))
x2 = max(0.0, min(x2, float(w_img)))
y2 = max(0.0, min(y2, float(h_img)))
face_rects.append(FaceRect(
x1=x1,
y1=y1,
x2=x2,
y2=y2,
score=float(box.score)
))
return DetectFaceResponse(
success=True if face_rects else False,
message="Success" if face_rects else "No face detected",
faces=face_rects,
processing_time=time.time() - start_time
)
except Exception as e:
logger.error(f"Detection failed: {e}", exc_info=True)
return DetectFaceResponse(
success=False,
message=f"Server error: {str(e)}",
processing_time=time.time() - start_time
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Face Feature Extraction Microservice')

BIN
face_crop_1_scale_0.3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 275 KiB

BIN
face_crop_1_scale_0.6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 380 KiB

BIN
result_detected.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

126
test_detect_face.py Normal file
View File

@ -0,0 +1,126 @@
import requests
import cv2
import numpy as np
import os
import json
import argparse
import sys
# 配置服务地址
PYTHON_ALGO_URL = "http://192.168.0.37:18000"
def get_default_image_path():
"""获取一个默认存在的测试图片路径"""
# 尝试找一个存在的真实图片
potential_paths = [
r"C:\Users\24830\Desktop\人脸.jpg",
]
for path in potential_paths:
if os.path.exists(path):
return path
return None
def detect_and_draw(image_path, expand_scale=0.0):
url = f"{PYTHON_ALGO_URL}/api/detect_face"
print(f"\n[Processing] Image: {image_path}")
print(f"[API URL] {url}")
print(f"[Expand Scale] {expand_scale}")
if not os.path.exists(image_path):
print(f"❌ Error: Image file not found: {image_path}")
return
try:
# 1. 准备发送请求
# 读取图片用于显示/画框
img_array = np.fromfile(image_path, dtype=np.uint8)
original_img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
if original_img is None:
print(f"❌ Error: Failed to read image using opencv: {image_path}")
return
# 2. 调用API
data = {'expand_scale': expand_scale}
with open(image_path, 'rb') as f:
files = {'image': f}
# 注意: 使用 data=data 发送表单数据,而不是 params=params (查询参数)
response = requests.post(url, files=files, data=data, timeout=10)
if response.status_code != 200:
print(f"❌ Failed: Status {response.status_code}, Response: {response.text}")
return
result = response.json()
print("\n=== API Response ===")
print(json.dumps(result, indent=2))
# 3. 处理结果并画图
if result.get('success'):
faces = result.get('faces', [])
count = len(faces)
print(f"\n✅ Success: Detected {count} faces.")
# 创建副本用于画图
draw_img = original_img.copy()
for i, face in enumerate(faces):
x1 = int(face['x1'])
y1 = int(face['y1'])
x2 = int(face['x2'])
y2 = int(face['y2'])
score = face['score']
# 画矩形框
# 颜色 (B, G, R) - 绿色
color = (0, 255, 0)
thickness = 2
cv2.rectangle(draw_img, (x1, y1), (x2, y2), color, thickness)
# 写文字
label = f"Face {i+1}: {score:.2f}"
cv2.putText(draw_img, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
print(f" - Face {i+1}: Box({x1}, {y1}, {x2}, {y2}), Score: {score:.4f}")
# 保存裁剪的人脸图观察效果
face_crop = original_img[y1:y2, x1:x2]
if face_crop.size > 0:
crop_filename = f"face_crop_{i+1}_scale_{expand_scale}.jpg"
cv2.imencode('.jpg', face_crop)[1].tofile(crop_filename)
print(f" Saved crop: {crop_filename}")
# 4. 保存结果图
output_filename = f"result_detected_scale_{expand_scale}.jpg"
cv2.imencode('.jpg', draw_img)[1].tofile(output_filename)
print(f"\n✅ Result image saved to: {os.path.abspath(output_filename)}")
else:
print(f"⚠️ API logic returned failure: {result.get('message')}")
except Exception as e:
print(f"❌ Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Face Detection API Test Script')
parser.add_argument('image_path', nargs='?', help='Path to the image file')
parser.add_argument('--scale', type=float, default=0.6, help='Expand scale (default: 0.0)')
args = parser.parse_args()
target_path = args.image_path
if not target_path:
default_path = get_default_image_path()
if default_path:
print(f"No image path provided, using default found: {default_path}")
target_path = default_path
else:
print("Usage: python test_detect_face.py <path_to_image> [--scale 0.3]")
print("Error: No image path provided and no default test image found.")
sys.exit(1)
detect_and_draw(target_path, args.scale)