Compare commits

..

No commits in common. "dev" and "main" have entirely different histories.
dev ... main

11 changed files with 1 additions and 529 deletions

View File

@ -1,260 +0,0 @@
# 人脸识别系统 API 接口文档
本文档详细说明了人脸识别系统的后端业务接口与算法服务接口,供开发人员集成使用。
## 1. 系统业务接口 (Java Backend)
后端服务主要提供分组管理和人员信息管理功能。所有接口统一通过 HTTP 协议调用,返回 JSON 格式数据。
**基础路径**: `/api` (例如: `http://<server_ip>:<port>/api`)
### 1.1 分组管理
#### 1.1.1 创建/添加分组
* **接口地址**: `/groups/add`
* **请求方式**: `POST`
* **请求类型**: `application/json`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| name | String | 是 | 分组名称 |
| description | String | 否 | 分组描述 (如果有) |
**请求示例**:
```json
{
"name": "VIP人员",
"description": "重要客户分组"
}
```
* **返回结果**:
```json
{
"code": 200,
"msg": "success",
"data": {
"id": 1,
"name": "VIP人员",
"createTime": "2023-12-30T10:00:00"
}
}
```
#### 1.1.2 获取分组列表
* **接口地址**: `/groups/list`
* **请求方式**: `GET`
* **返回结果**:
```json
{
"code": 200,
"msg": "success",
"data": [
{
"id": 1,
"name": "默认分组"
},
{
"id": 2,
"name": "员工分组"
}
]
}
```
---
### 1.2 人员管理
#### 1.2.1 新增人员 (带照片)
该接口用于注册新用户,同时上传人脸照片用于提取特征。
* **接口地址**: `/users/add`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data` (表单上传)
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| name | String | 是 | 人员姓名 |
| groupId | Long | 否 | 所属分组ID |
| photo | File | 是 | 人脸照片文件 (jpg/png) |
* **返回结果**:
```json
{
"code": 200,
"msg": "success",
"data": {
"id": 101,
"name": "张三",
"groupId": 2,
"feature": "..." // (内部可能不直接返回长特征,视具体实现而定)
}
}
```
#### 1.2.2 编辑人员信息
用于更新人员姓名、分组或重新上传人脸照片。
* **接口地址**: `/users/update/{id}`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data`
* **路径参数**:
* `id`: 人员ID (Long)
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| name | String | 是 | 人员姓名 |
| groupId | Long | 否 | 所属分组ID (不传则不修改) |
| photo | File | 否 | 新的人脸照片 (不传则不修改) |
* **返回结果**:
```json
{
"code": 200,
"msg": "success",
"data": { ... }
}
```
#### 1.2.3 获取人员列表 (查询)
* **接口地址**: `/users/list`
* **请求方式**: `GET`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| name | String | 否 | 按姓名模糊查询 |
| groupId | Long | 否 | 按分组ID筛选 |
* **返回结果**:
```json
{
"code": 200,
"msg": "success",
"data": [ ...User Objects... ]
}
```
#### 1.2.4 人脸搜索 (1:N 检索)
用于上传一张人脸照片,并在指定分组内检索最相似的人员。
* **接口地址**: `/users/search`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| photo | File | 是 | 待检索的人脸照片 |
| groupId | Long | 是 | 目标分组ID |
* **返回结果**:
**成功找到匹配**:
```json
{
"code": 200,
"msg": "success",
"data": {
"id": 101,
"name": "张三",
"groupId": 2,
...
}
}
```
**未找到匹配 (相似度低于阈值 0.6)**:
```json
{
"code": 404,
"msg": "未找到匹配用户"
}
```
---
## 2. 算法服务接口 (Python - FaceFeatureExtractor)
该接口通常由 Java 后端内部调用,但如果开发人员需要独立调试算法或进行集成,可直接调用该微服务。
**功能**: 接收图片,进行质量检测(人脸检测、模糊度、亮度、姿态等),合格后提取 1024 维人脸特征向量。
**默认端口**: `8000` (具体取决于 docker-compose 配置)
### 2.1 提取人脸特征
* **接口地址**: `/api/extract_feature`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| image | File | 是 | 图片文件 (支持 jpg, png 等常见格式) |
* **返回结果 (JSON)**:
**成功响应**:
```json
{
"success": true,
"message": "Success",
"feature": [0.123, -0.456, ...], // 1024维浮点数组
"feature_dim": 1024,
"processing_time": 0.045
}
```
**失败/质量不合格响应**:
```json
{
"success": false,
"message": "No face detected" // 或 "Face quality check failed...", "Server error..."
}
```
### 2.2 健康检查
* **接口地址**: `/health`
* **请求方式**: `GET`
* **返回结果**: `{"status": "healthy", "service": "Face Feature Extractor"}`
### 2.3 人脸检测 (获取坐标)
* **接口地址**: `/api/detect_face`
* **请求方式**: `POST`
* **请求类型**: `multipart/form-data`
* **请求参数**:
| 参数名 | 类型 | 必填 | 说明 |
| :--- | :--- | :--- | :--- |
| image | File | 是 | 图片文件 |
| expand_scale | Float | 否 | 扩充比例,默认 0.0。例如 0.3 表示长宽各扩充 30% |
* **返回结果**:
> **坐标说明**:
> * `x1`, `y1`: 人脸检测框 **左上角** 的像素坐标。
> * `x2`, `y2`: 人脸检测框 **右下角** 的像素坐标。
> * `score`: 检测置信度 (0-1之间)。
> * **注意**: 即使设置了 `expand_scale`,返回的坐标也会被限制在图片边界内 (Clip to bounds)。
```json
{
"success": true,
"message": "Success",
"faces": [
{
"x1": 100.0,
"y1": 50.0,
"x2": 200.0,
"y2": 150.0,
"score": 0.98
}
],
"processing_time": 0.02
}
```

View File

@ -5,7 +5,7 @@
"""
import uvicorn
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
@ -118,94 +118,6 @@ async def extract_feature(image: UploadFile = File(...)):
message=f"Server error: {str(e)}"
)
# 新增人脸检测响应模型
class FaceRect(BaseModel):
x1: float
y1: float
x2: float
y2: float
score: float
class DetectFaceResponse(BaseModel):
success: bool
message: str
faces: List[FaceRect] = []
processing_time: Optional[float] = None
@app.post("/api/detect_face", response_model=DetectFaceResponse)
async def detect_face(image: UploadFile = File(...), expand_scale: float = Form(0.0)):
"""
人脸检测接口
输入: 图片文件, 扩充比例(expand_scale)
输出: 人脸坐标列表 (x1, y1, x2, y2)
"""
import time
start_time = time.time()
try:
img = decode_image(image)
if img is None:
raise HTTPException(status_code=400, detail="Invalid image file")
# 获取图片尺寸用于坐标截断
h_img, w_img = img.shape[:2]
ext = get_extractor()
# 直接调用检测器,不进行旋转校正,保证坐标对应原图
boxes = ext.detect_faces(img)
face_rects = []
if boxes:
for box in boxes:
# 原始坐标
x1 = float(box.x1)
y1 = float(box.y1)
x2 = float(box.x2)
y2 = float(box.y2)
# 应用扩充逻辑 (如果 expand_scale > 0)
if expand_scale > 0:
w = x2 - x1
h = y2 - y1
cx = x1 + w / 2
cy = y1 + h / 2
new_w = w * (1 + expand_scale)
new_h = h * (1 + expand_scale)
x1 = cx - new_w / 2
y1 = cy - new_h / 2
x2 = cx + new_w / 2
y2 = cy + new_h / 2
# 强制限制坐标在图片范围内,防止出现负数或越界
x1 = max(0.0, min(x1, float(w_img)))
y1 = max(0.0, min(y1, float(h_img)))
x2 = max(0.0, min(x2, float(w_img)))
y2 = max(0.0, min(y2, float(h_img)))
face_rects.append(FaceRect(
x1=x1,
y1=y1,
x2=x2,
y2=y2,
score=float(box.score)
))
return DetectFaceResponse(
success=True if face_rects else False,
message="Success" if face_rects else "No face detected",
faces=face_rects,
processing_time=time.time() - start_time
)
except Exception as e:
logger.error(f"Detection failed: {e}", exc_info=True)
return DetectFaceResponse(
success=False,
message=f"Server error: {str(e)}",
processing_time=time.time() - start_time
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Face Feature Extraction Microservice')

View File

@ -106,23 +106,4 @@ public class UserController {
result.put("data", count);
return result;
}
@PostMapping("/search")
public Map<String, Object> searchUser(
@RequestParam("photo") MultipartFile photo,
@RequestParam("groupId") Long groupId) {
User user = userService.searchUser(photo, groupId);
Map<String, Object> result = new HashMap<>();
if (user != null) {
result.put("code", 200);
result.put("msg", "success");
result.put("data", user);
} else {
result.put("code", 404);
result.put("msg", "未找到匹配用户");
}
return result;
}
}

View File

@ -58,14 +58,5 @@ public interface UserService {
*
* @param id 用户ID
*/
/**
* 人脸搜索
*
* @param photo 人脸照片
* @param groupId 分组ID
* @return 匹配的用户如果匹配度过低返回null
*/
User searchUser(MultipartFile photo, Long groupId);
void deleteUser(Long id);
}

View File

@ -41,8 +41,6 @@ public class UserServiceImpl implements UserService {
if (userGroupMapper.selectById(groupId) == null) {
throw new RuntimeException("指定的用户分组不存在");
}
// 检查重名
checkDuplicateName(name, groupId, null);
}
// 确保上传目录存在
@ -144,12 +142,6 @@ public class UserServiceImpl implements UserService {
throw new RuntimeException("指定的用户分组不存在");
}
}
// 如果修改了名字或分组检查重名
if (!user.getName().equals(name) || (groupId != null && !groupId.equals(user.getGroupId()))) {
checkDuplicateName(name, groupId != null ? groupId : user.getGroupId(), id);
}
user.setName(name);
user.setGroupId(groupId);
user.setUpdateTime(LocalDateTime.now());
@ -228,90 +220,4 @@ public class UserServiceImpl implements UserService {
}
}
}
@Override
public User searchUser(MultipartFile photo, Long groupId) {
if (groupId == null) {
throw new RuntimeException("必须指定分组ID");
}
// 1. 保存上传的照片 (临时)
String fileName = IdUtil.fastSimpleUUID() + "_" + photo.getOriginalFilename();
File uploadDir = new File(uploadPath);
if (!uploadDir.exists()) {
uploadDir.mkdirs();
}
File dest = new File(uploadDir, fileName);
try {
photo.transferTo(dest);
} catch (IOException e) {
throw new RuntimeException("照片处理失败", e);
}
try {
// 2. 提取特征
List<Float> targetFeature = faceFeatureExtractorClient.extractFeature(dest);
if (targetFeature == null || targetFeature.isEmpty()) {
throw new RuntimeException("未能从上传图片中提取到人脸特征");
}
// 3. 获取分组下所有用户
List<User> users = getUsers(null, groupId);
if (users == null || users.isEmpty()) {
return null;
}
// 4. 比对特征
User bestMatch = null;
float maxSimilarity = 0f;
float threshold = 0.6f; // 相似度阈值
for (User user : users) {
if (user.getFeatureData() == null)
continue;
List<Float> dbFeature = com.bonuos.face.util.FaceUtils.parseFeatureData(user.getFeatureData());
if (dbFeature != null) {
float similarity = com.bonuos.face.util.FaceUtils.cosineSimilarity(targetFeature, dbFeature);
if (similarity > maxSimilarity) {
maxSimilarity = similarity;
bestMatch = user;
}
}
}
// 5. 返回结果
if (maxSimilarity >= threshold) {
return bestMatch;
}
return null; // 未找到匹配
} catch (Exception e) {
throw new RuntimeException("人脸搜索失败: " + e.getMessage(), e);
} finally {
// 清理临时文件
if (dest.exists()) {
dest.delete();
}
}
}
/**
* 检查分组下是否存在同名用户
*/
private void checkDuplicateName(String name, Long groupId, Long excludeId) {
com.baomidou.mybatisplus.core.conditions.query.QueryWrapper<User> wrapper = new com.baomidou.mybatisplus.core.conditions.query.QueryWrapper<>();
wrapper.eq("group_id", groupId)
.eq("name", name)
.eq("status", 1); // 只检查有效用户
if (excludeId != null) {
wrapper.ne("id", excludeId);
}
if (userMapper.selectCount(wrapper) > 0) {
throw new RuntimeException("该分组下已存在名为 [" + name + "] 的用户");
}
}
}

View File

@ -1,58 +0,0 @@
package com.bonuos.face.util;
import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.util.List;
public class FaceUtils {
private static final ObjectMapper objectMapper = new ObjectMapper();
/**
* 计算两个特征向量的余弦相似度
*
* @param feature1 特征向量1
* @param feature2 特征向量2
* @return 相似度 [-1, 1]
*/
public static float cosineSimilarity(List<Float> feature1, List<Float> feature2) {
if (feature1 == null || feature2 == null || feature1.size() != feature2.size() || feature1.isEmpty()) {
return -1f;
}
float dotProduct = 0.0f;
float normA = 0.0f;
float normB = 0.0f;
for (int i = 0; i < feature1.size(); i++) {
dotProduct += feature1.get(i) * feature2.get(i);
normA += Math.pow(feature1.get(i), 2);
normB += Math.pow(feature2.get(i), 2);
}
if (normA == 0 || normB == 0) {
return 0.0f;
}
return (float) (dotProduct / (Math.sqrt(normA) * Math.sqrt(normB)));
}
/**
* 解析特征数据字符串
*
* @param featureDataJson JSON字符串 [0.1, 0.2, ...]
* @return 特征列表
*/
public static List<Float> parseFeatureData(String featureDataJson) {
if (featureDataJson == null || featureDataJson.isEmpty()) {
return null;
}
try {
return objectMapper.readValue(featureDataJson, new TypeReference<List<Float>>() {
});
} catch (Exception e) {
return null;
}
}
}