import configparser import pymysql import pandas as pd from sqlalchemy import create_engine from urllib.parse import quote_plus # 读取配置文件 config = configparser.ConfigParser() config.read('config.ini') # 从配置文件获取数据库连接信息 source_db_config = { 'host': config.get('source_db', 'host'), 'user': config.get('source_db', 'user'), 'password': config.get('source_db', 'password'), 'database': config.get('source_db', 'database'), 'port': config.getint('source_db', 'port') } target_db_config = { 'host': config.get('target_db', 'host'), 'user': config.get('target_db', 'user'), 'password': config.get('target_db', 'password'), 'database': config.get('target_db', 'database'), 'port': config.getint('target_db', 'port') } # 创建SQLAlchemy引擎 source_engine = create_engine( f"mysql+pymysql://{source_db_config['user']}:{quote_plus(source_db_config['password'])}@{source_db_config['host']}:{source_db_config['port']}/{source_db_config['database']}" ) target_engine = create_engine( f"mysql+pymysql://{target_db_config['user']}:{quote_plus(target_db_config['password'])}@{target_db_config['host']}:{target_db_config['port']}/{target_db_config['database']}" ) # 定义替换映射(可以从规则文件中读取,这里保持硬编码) type_id_mapping = { '项目部': 36, '施工队': 33, '分包商': 32, '后勤科室': 1685, '外单位': 1704, '修试部门': 1706 } dept_id_mapping = { 5: 340, # 安徽顺全电力工程有限公司 4: 102, # 送电二分公司 3: 327, # 送电一分公司 6: 101, # 机具(物流)分公司 7: 346, # 运检分公司 8: 338, # 建筑分公司 9: 309, # 安徽宏源电力建设有限公司 10: 347, # 公司培训中心(宏源工业园) 11: 337, # 检修试验分公司 12: 100, # 变电分公司 13: 348, # 预制构件分公司 14: 344, # 机械化分公司 15: 342, # 公司机关 16: 345, # 外单位租赁业务 17: 339, # 安徽顺安电网建设有限公司 18: 341 # 班组管理中心 } def process_bm_project_dept(): """处理bm_project_dept表数据""" df = pd.read_sql("SELECT * FROM bm_project_dept", source_engine) result = pd.DataFrame() result['unit_id'] = df['ID'] + 4000 result['unit_name'] = df['NAME'] result['type_id'] = 36 # 项目部固定值 result['dept_id'] = df['COMPANY_ID'].map(dept_id_mapping) result['create_time'] = df['CREATE_TIME'] return result def process_bm_team_info(): """处理bm_team_info表数据""" df = pd.read_sql("SELECT * FROM bm_team_info where IS_ACTIVE = 1", source_engine) result = pd.DataFrame() result['unit_id'] = df['ID'] + 5000 result['unit_name'] = df['NAME'] result['type_id'] = 33 # 施工队固定值 result['dept_id'] = df['COMPANY_ID'].map(dept_id_mapping) result['create_time'] = df['CREATE_TIME'] return result def process_bm_sub_contractor_info(): """处理bm_sub_contractor_info表数据""" df = pd.read_sql("SELECT * FROM bm_sub_contractor_info", source_engine) result = pd.DataFrame() result['unit_id'] = df['ID'] + 6000 result['unit_name'] = df['NAME'] result['type_id'] = 32 # 分包商固定值 # 注意:此表没有dept_id字段 return result def process_bm_rear_service(): """处理bm_rear_service表数据""" df = pd.read_sql("SELECT * FROM bm_rear_service", source_engine) result = pd.DataFrame() result['unit_id'] = df['id'] + 7000 result['unit_name'] = df['rear_name'] result['type_id'] = 1685 # 后勤科室固定值 result['dept_id'] = df['company_id'] # 直接复制 # 注意:此表没有create_time字段 return result def main(): try: # 处理所有源表 df_project = process_bm_project_dept() df_team = process_bm_team_info() df_sub = process_bm_sub_contractor_info() df_rear = process_bm_rear_service() # 合并所有数据 final_df = pd.concat([df_project, df_team, df_sub, df_rear], ignore_index=True) # 写入目标数据库 final_df.to_sql('bm_unit', target_engine, if_exists='append', index=False) print("数据转换和导入成功完成!") print(f"共导入 {len(final_df)} 条记录") except Exception as e: print(f"处理过程中发生错误: {str(e)}") if __name__ == "__main__": main()