126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
import pandas as pd
|
||
import sqlalchemy
|
||
from sqlalchemy import create_engine, text
|
||
import configparser
|
||
import os
|
||
from urllib.parse import quote_plus
|
||
|
||
def get_db_connection_string(config, section):
|
||
"""从配置文件中构建数据库连接字符串"""
|
||
return f"mysql+pymysql://{config[section]['user']}:{quote_plus(config[section]['password'])}@" \
|
||
f"{config[section]['host']}:{config[section]['port']}/{config[section]['database']}"
|
||
|
||
|
||
def transform_and_load_supplier(config_file_path):
|
||
"""
|
||
从源数据库提取ma_vender数据,转换后加载到目标数据库ma_supplier_info
|
||
:param config_file_path: 配置文件路径
|
||
"""
|
||
# 读取配置文件
|
||
if not os.path.exists(config_file_path):
|
||
raise FileNotFoundError(f"配置文件不存在: {config_file_path}")
|
||
|
||
config = configparser.ConfigParser()
|
||
config.read(config_file_path)
|
||
|
||
try:
|
||
# 获取数据库连接
|
||
source_conn_str = get_db_connection_string(config, 'source_db')
|
||
target_conn_str = get_db_connection_string(config, 'target_db')
|
||
source_engine = create_engine(source_conn_str)
|
||
target_engine = create_engine(target_conn_str)
|
||
|
||
# 从源表读取数据(过滤company_id=1且IS_ACTIVE=1的记录)
|
||
print("正在从源表ma_vender读取数据...")
|
||
source_query = """
|
||
SELECT id, NAME, ADDRESS, COMPANY_MAN, MAIN_PERSON, PHONE, SCOPE_BUSINESS
|
||
FROM ma_vender
|
||
WHERE company_id = 1 \
|
||
AND IS_ACTIVE = 1 \
|
||
"""
|
||
source_df = pd.read_sql(source_query, source_engine)
|
||
|
||
if source_df.empty:
|
||
print("没有符合条件的数据需要转换")
|
||
return
|
||
print(f"读取到{len(source_df)}条待转换数据")
|
||
|
||
# 数据转换
|
||
print("正在进行数据转换...")
|
||
target_df = pd.DataFrame()
|
||
|
||
# 字段映射(源字段 → 目标字段)
|
||
field_mapping = {
|
||
'id': 'supplier_id',
|
||
'NAME': 'supplier',
|
||
'ADDRESS': 'address',
|
||
'COMPANY_MAN': 'legal_person',
|
||
'MAIN_PERSON': 'primary_contact',
|
||
'PHONE': 'phone',
|
||
'SCOPE_BUSINESS': 'business_scope'
|
||
}
|
||
|
||
# 复制字段
|
||
for source_field, target_field in field_mapping.items():
|
||
target_df[target_field] = source_df[source_field]
|
||
|
||
# 检查数据质量
|
||
print("\n数据质量检查:")
|
||
print(f"- 空供应商ID记录: {target_df['supplier_id'].isna().sum()}")
|
||
print(f"- 空供应商名称记录: {target_df['supplier'].isna().sum()}")
|
||
print(f"- 无效电话号码记录: {target_df['phone'].str.contains('[^0-9-]').sum()}")
|
||
|
||
# 写入目标表(使用事务确保原子性)
|
||
print("\n正在写入目标表ma_supplier_info...")
|
||
with target_engine.begin() as conn:
|
||
# 检查并处理可能的主键冲突
|
||
existing_ids = pd.read_sql(
|
||
"SELECT supplier_id FROM ma_supplier_info",
|
||
conn
|
||
)['supplier_id'].tolist()
|
||
|
||
new_records = target_df[~target_df['supplier_id'].isin(existing_ids)]
|
||
dup_count = len(target_df) - len(new_records)
|
||
if dup_count > 0:
|
||
print(f"发现{dup_count}条重复供应商记录,将自动跳过")
|
||
print("重复ID示例:",
|
||
target_df[target_df['supplier_id'].isin(existing_ids)]['supplier_id'].head(3).tolist())
|
||
|
||
if not new_records.empty:
|
||
new_records.to_sql(
|
||
'ma_supplier_info',
|
||
conn,
|
||
if_exists='append',
|
||
index=False,
|
||
dtype={
|
||
'supplier_id': sqlalchemy.types.INTEGER(),
|
||
'supplier': sqlalchemy.types.VARCHAR(length=100),
|
||
'address': sqlalchemy.types.VARCHAR(length=200),
|
||
'legal_person': sqlalchemy.types.VARCHAR(length=50),
|
||
'primary_contact': sqlalchemy.types.VARCHAR(length=50),
|
||
'phone': sqlalchemy.types.VARCHAR(length=20),
|
||
'business_scope': sqlalchemy.types.TEXT()
|
||
}
|
||
)
|
||
print(f"成功写入{len(new_records)}条新供应商数据")
|
||
else:
|
||
print("没有新供应商数据需要写入")
|
||
|
||
except Exception as e:
|
||
print(f"\n处理过程中发生错误: {str(e)}")
|
||
raise
|
||
finally:
|
||
if 'source_engine' in locals():
|
||
source_engine.dispose()
|
||
if 'target_engine' in locals():
|
||
target_engine.dispose()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 配置文件路径
|
||
config_file = "config.ini"
|
||
|
||
try:
|
||
transform_and_load_supplier(config_file)
|
||
except Exception as e:
|
||
print(f"程序执行失败: {str(e)}") |