#include "face_pipeline.h" #include #include // 构造函数 FacePipeline::FacePipeline(const std::string& model_dir) : m_env(ORT_LOGGING_LEVEL_WARNING, "FaceSDK"), m_memory_info(Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault)) { m_session_options.SetIntraOpNumThreads(4); // 使用4线程 m_session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); m_initialized = LoadModels(model_dir); if (m_initialized) { InitMemoryAllocators(); LOGI("FacePipeline initialized successfully."); } else { LOGE("FacePipeline initialization failed."); } } FacePipeline::~FacePipeline() {} // (私有) 加载所有模型 bool FacePipeline::LoadModels(const std::string& model_dir) { auto load_session = [&](std::unique_ptr& session, const std::string& model_name) { std::string model_path = model_dir + "/" + model_name; try { session = std::make_unique(m_env, model_path.c_str(), m_session_options); LOGI("Loaded model: %s", model_path.c_str()); } catch (const Ort::Exception& e) { LOGE("Error loading model %s: %s", model_path.c_str(), e.what()); return false; } return true; }; if (!load_session(m_session_rotator, "model_gray_mobilenetv2_rotcls.onnx")) return false; if (!load_session(m_session_detector, "faceboxesv2-640x640.onnx")) return false; if (!load_session(m_session_pose_var, "fsanet-var.onnx")) return false; if (!load_session(m_session_pose_conv, "fsanet-conv.onnx")) return false; if (!load_session(m_session_landmarker1, "face_landmarker_pts5_net1.onnx")) return false; if (!load_session(m_session_landmarker2, "face_landmarker_pts5_net2.onnx")) return false; if (!load_session(m_session_recognizer, "face_recognizer.onnx")) return false; LOGI("All 7 models loaded successfully."); return true; } // (私有) 获取模型输入/输出信息 void FacePipeline::InitMemoryAllocators() { auto get_io_names = [&](Ort::Session* session, std::vector& input_names, std::vector& output_names, std::vector& input_shape) { input_names.clear(); output_names.clear(); input_shape.clear(); for (size_t i = 0; i < session->GetInputCount(); ++i) { auto input_name_ptr = session->GetInputNameAllocated(i, m_allocator); input_names.push_back(strdup(input_name_ptr.get())); } for (size_t i = 0; i < session->GetOutputCount(); ++i) { auto output_name_ptr = session->GetOutputNameAllocated(i, m_allocator); output_names.push_back(strdup(output_name_ptr.get())); } auto input_type_info = session->GetInputTypeInfo(0); auto tensor_info = input_type_info.GetTensorTypeAndShapeInfo(); input_shape = tensor_info.GetShape(); if (input_shape[0] < 1) input_shape[0] = 1; }; get_io_names(m_session_rotator.get(), m_rot_input_names, m_rot_output_names, m_rot_input_shape); get_io_names(m_session_detector.get(), m_det_input_names, m_det_output_names, m_det_input_shape); get_io_names(m_session_pose_var.get(), m_pose_var_input_names, m_pose_var_output_names, m_pose_var_input_shape); get_io_names(m_session_pose_conv.get(), m_pose_conv_input_names, m_pose_conv_output_names, m_pose_conv_input_shape); get_io_names(m_session_landmarker1.get(), m_lm1_input_names, m_lm1_output_names, m_lm1_input_shape); get_io_names(m_session_landmarker2.get(), m_lm2_input_names, m_lm2_output_names, m_lm2_input_shape); get_io_names(m_session_recognizer.get(), m_rec_input_names, m_rec_output_names, m_rec_input_shape); // 生成 FaceBoxesV2 的锚点 generate_anchors_faceboxes(m_det_input_shape[2], m_det_input_shape[3]); // H, W (640, 640) // 调整Blob缓冲区大小 (查找最大所需size) size_t max_blob_size = 0; auto update_max = [&](const std::vector& shape) { size_t s = std::accumulate(shape.begin() + 1, shape.end(), 1, std::multiplies()); if (s > max_blob_size) max_blob_size = s; }; update_max(m_rot_input_shape); update_max(m_det_input_shape); update_max(m_pose_var_input_shape); update_max(m_lm1_input_shape); update_max(m_rec_input_shape); m_blob_buffer.resize(max_blob_size); } // --- 图像预处理辅助函数 --- void FacePipeline::image_to_blob(const cv::Mat& img, std::vector& blob, const float* mean, const float* std) { int channels = img.channels(); int height = img.rows; int width = img.cols; for (int c = 0; c < channels; c++) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { float val; if (channels == 3) { val = static_cast(img.at(h, w)[c]); } else { val = static_cast(img.at(h, w)); } blob[c * width * height + h * width + w] = (val - mean[c]) * std[c]; } } } } Ort::Value FacePipeline::create_tensor(const std::vector& blob_data, const std::vector& input_shape) { return Ort::Value::CreateTensor(m_memory_info, const_cast(blob_data.data()), blob_data.size(), input_shape.data(), input_shape.size()); } // --- 核心管线实现 --- bool FacePipeline::Extract(const cv::Mat& image, std::vector& feature) { if (!m_initialized) { LOGE("Extract failed: Pipeline is not initialized."); return false; } if (image.empty()) { LOGE("Extract failed: Input image is empty."); return false; } // --- 1. 旋转检测 --- int rot_angle_code = RunRotation(image); cv::Mat upright_image; if (rot_angle_code >= 0) { cv::rotate(image, upright_image, rot_angle_code); } else { upright_image = image; } // --- 2. 人脸检测 --- std::vector boxes; if (!RunDetection(upright_image, boxes)) { LOGI("Extract failed: No face detected."); return false; } // (Python 使用 topk=2, NMS 后 boxes[0] 即是最佳) FaceBox best_box = boxes[0]; // 裁剪人脸 (用于姿态和关键点) // crop_face, (assess_quality) // Python 的 crop_face 实现了带 padding 的裁剪 cv::Rect face_rect_raw(best_box.x1, best_box.y1, best_box.x2 - best_box.x1, best_box.y2 - best_box.y1); int pad_top = std::max(0, -face_rect_raw.y); int pad_bottom = std::max(0, (face_rect_raw.y + face_rect_raw.height) - upright_image.rows); int pad_left = std::max(0, -face_rect_raw.x); int pad_right = std::max(0, (face_rect_raw.x + face_rect_raw.width) - upright_image.cols); cv::Mat face_crop_padded; cv::copyMakeBorder(upright_image, face_crop_padded, pad_top, pad_bottom, pad_left, pad_right, cv::BORDER_CONSTANT, cv::Scalar(0,0,0)); cv::Rect face_rect_padded(face_rect_raw.x + pad_left, face_rect_raw.y + pad_top, face_rect_raw.width, face_rect_raw.height); cv::Mat face_crop = face_crop_padded(face_rect_padded); // --- 5. 人脸对齐 (在姿态检测前,因为姿态检测需要对齐的脸) --- // (assess_quality) 调用 self.pose_checker.check(aligned_face) // QualityOfPose.check() // Landmark5er.inference() -> crop_face -> resize(112, 112) // FaceAlign.align() -> 256x256 // // **逻辑冲突**: // face_feature_extractor.py L345 (assess_quality) 调用 pose_checker.check(aligned_face) // 但 L336 (align_face) 依赖 landmarks // 但 L330 (extract_landmarks) 依赖 boxes // // **修正**: Python 源码 L306 `QualityOfPose` 构造函数 -> L416 `check` -> L389 `detect_angle` -> L370 `transform` // QualityOfPose.transform() 接收的是 *未对齐* 的脸部裁剪 (L379 canvas[ny1:ny1 + h, nx1:nx1 + w] = mat) // **我的 C++ 逻辑错了**。 姿态检测不需要对齐的脸,它需要 *原始裁剪*。 // --- 3. 姿态估计 (质量过滤) --- FacePose pose; if (!RunPose(face_crop, pose)) { LOGI("Extract failed: Pose estimation failed."); return false; } if (std::abs(pose.yaw) > m_pose_threshold || std::abs(pose.pitch) > m_pose_threshold) { LOGI("Extract failed: Face pose (Y:%.1f, P:%.1f) exceeds threshold (%.1f)", pose.yaw, pose.pitch, m_pose_threshold); return false; } // --- 4. 关键点检测 --- FaceLandmark landmark; if (!RunLandmark(upright_image, best_box, landmark)) { LOGI("Extract failed: Landmark detection failed."); return false; } // --- 5. 人脸对齐 --- cv::Mat aligned_face = RunAlignment(upright_image, landmark); // --- 6. 特征提取 --- if (!RunRecognition(aligned_face, feature)) { LOGI("Extract failed: Feature recognition failed."); return false; } // --- 7. 归一化 (在 RunRecognition 内部完成) --- LOGI("Extract success."); return true; } // --- 步骤 1: 旋转检测 (来自 face_feature_extractor.py) --- void FacePipeline::preprocess_rotation(const cv::Mat& image, std::vector& blob_data) { cv::Mat gray_img, resized, cropped, gray_3d; cv::cvtColor(image, gray_img, cv::COLOR_BGR2GRAY); cv::resize(gray_img, resized, cv::Size(256, 256), 0, 0, cv::INTER_LINEAR); int start = (256 - 224) / 2; cv::Rect crop_rect(start, start, 224, 224); cropped = resized(crop_rect); cv::cvtColor(cropped, gray_3d, cv::COLOR_GRAY2BGR); // 归一化: / 255.0 (mean=[0,0,0], std=[1,1,1]) const float mean[3] = {0.0f, 0.0f, 0.0f}; const float std[3] = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; // 乘以 1/255 等于除以 255 image_to_blob(gray_3d, blob_data, mean, std); } int FacePipeline::RunRotation(const cv::Mat& image) { preprocess_rotation(image, m_blob_buffer); auto input_tensor = create_tensor(m_blob_buffer, m_rot_input_shape); auto output_tensors = m_session_rotator->Run(Ort::RunOptions{nullptr}, m_rot_input_names.data(), &input_tensor, 1, m_rot_output_names.data(), 1); float* output_data = output_tensors[0].GetTensorMutableData(); int max_index = std::distance(output_data, std::max_element(output_data, output_data + 4)); // (correct_image_rotation) if (max_index == 1) return cv::ROTATE_90_CLOCKWISE; if (max_index == 2) return cv::ROTATE_180; if (max_index == 3) return cv::ROTATE_90_COUNTERCLOCKWISE; return -1; } // --- 步骤 2: 人脸检测 (来自 facedetector.py) --- void FacePipeline::preprocess_detection(const cv::Mat& img, std::vector& blob_data) { cv::Mat resized; cv::resize(img, resized, cv::Size(m_det_input_shape[3], m_det_input_shape[2])); // 640x640 // 归一化: (img - [104, 117, 123]) * 1.0 const float mean[3] = {104.0f, 117.0f, 123.0f}; // BGR const float std[3] = {1.0f, 1.0f, 1.0f}; image_to_blob(resized, blob_data, mean, std); } bool FacePipeline::RunDetection(const cv::Mat& image, std::vector& boxes) { float img_height = (float)image.rows; float img_width = (float)image.cols; preprocess_detection(image, m_blob_buffer); auto input_tensor = create_tensor(m_blob_buffer, m_det_input_shape); auto output_tensors = m_session_detector->Run(Ort::RunOptions{nullptr}, m_det_input_names.data(), &input_tensor, 1, m_det_output_names.data(), 2); // 2 outputs! const float* bboxes_data = output_tensors[0].GetTensorData(); // [1, N, 4] const float* probs_data = output_tensors[1].GetTensorData(); // [1, N, 2] long num_anchors = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape()[1]; if (num_anchors != m_anchors.size()) { LOGE("Anchor size mismatch! Expected %zu, Got %ld", m_anchors.size(), num_anchors); return false; } std::vector bbox_collection; const float variance[2] = {0.1f, 0.2f}; // for (long i = 0; i < num_anchors; ++i) { float conf = probs_data[i * 2 + 1]; // (probs[0, i, 1]) if (conf < m_det_threshold) continue; const Anchor& anchor = m_anchors[i]; float dx = bboxes_data[i * 4 + 0]; float dy = bboxes_data[i * 4 + 1]; float dw = bboxes_data[i * 4 + 2]; float dh = bboxes_data[i * 4 + 3]; float cx = anchor.cx + dx * variance[0] * anchor.s_kx; // float cy = anchor.cy + dy * variance[0] * anchor.s_ky; // float w = anchor.s_kx * std::exp(dw * variance[1]); // float h = anchor.s_ky * std::exp(dh * variance[1]); // bbox_collection.push_back({ (cx - w / 2.0f) * img_width, (cy - h / 2.0f) * img_height, (cx + w / 2.0f) * img_width, (cy + h / 2.0f) * img_height, conf }); } boxes = hard_nms(bbox_collection, m_det_iou_threshold, m_det_topk); // (nms_type=0) return !boxes.empty(); } void FacePipeline::generate_anchors_faceboxes(int target_height, int target_width) { // (generate_anchors) m_anchors.clear(); std::vector steps = {32, 64, 128}; std::vector> min_sizes = {{32, 64, 128}, {256}, {512}}; std::vector> feature_maps; for (int step : steps) { feature_maps.push_back({(int)std::ceil((float)target_height / step), (int)std::ceil((float)target_width / step)}); } std::vector offset_32 = {0.0f, 0.25f, 0.5f, 0.75f}; std::vector offset_64 = {0.0f, 0.5f}; for (int k = 0; k < feature_maps.size(); ++k) { auto f_map = feature_maps[k]; auto tmp_min_sizes = min_sizes[k]; int f_h = f_map[0]; int f_w = f_map[1]; for (int i = 0; i < f_h; ++i) { for (int j = 0; j < f_w; ++j) { for (int min_size : tmp_min_sizes) { float s_kx = (float)min_size / target_width; float s_ky = (float)min_size / target_height; if (min_size == 32) { for (float offset_y : offset_32) for (float offset_x : offset_32) m_anchors.push_back({(j + offset_x) * steps[k] / target_width, (i + offset_y) * steps[k] / target_height, s_kx, s_ky}); } else if (min_size == 64) { for (float offset_y : offset_64) for (float offset_x : offset_64) m_anchors.push_back({(j + offset_x) * steps[k] / target_width, (i + offset_y) * steps[k] / target_height, s_kx, s_ky}); } else { m_anchors.push_back({(j + 0.5f) * steps[k] / target_width, (i + 0.5f) * steps[k] / target_height, s_kx, s_ky}); } } } } } } // --- 步骤 3: 姿态估计 (来自 imgchecker.py) --- void FacePipeline::preprocess_pose(const cv::Mat& img, std::vector& blob_data) { float pad = 0.3f; // int h = img.rows; int w = img.cols; int nh = (int)(h + pad * h); int nw = (int)(w + pad * w); int nx1 = std::max(0, (nw - w) / 2); int ny1 = std::max(0, (nh - h) / 2); cv::Mat canvas = cv::Mat::zeros(nh, nw, CV_8UC3); img.copyTo(canvas(cv::Rect(nx1, ny1, w, h))); cv::Mat resized; cv::resize(canvas, resized, cv::Size(m_pose_var_input_shape[3], m_pose_var_input_shape[2])); // 64x64 // 归一化: (img - 127.5) / 127.5 const float mean[3] = {127.5f, 127.5f, 127.5f}; const float std[3] = {1.0f / 127.5f, 1.0f / 127.5f, 1.0f / 127.5f}; image_to_blob(resized, blob_data, mean, std); } bool FacePipeline::RunPose(const cv::Mat& face_crop, FacePose& pose) { preprocess_pose(face_crop, m_blob_buffer); // 运行 VAR auto input_tensor_var = create_tensor(m_blob_buffer, m_pose_var_input_shape); auto output_var = m_session_pose_var->Run(Ort::RunOptions{nullptr}, m_pose_var_input_names.data(), &input_tensor_var, 1, m_pose_var_output_names.data(), 1); // 运行 CONV (使用相同的 blob) auto input_tensor_conv = create_tensor(m_blob_buffer, m_pose_conv_input_shape); auto output_conv = m_session_pose_conv->Run(Ort::RunOptions{nullptr}, m_pose_conv_input_names.data(), &input_tensor_conv, 1, m_pose_conv_output_names.data(), 1); const float* data_var = output_var[0].GetTensorData(); const float* data_conv = output_conv[0].GetTensorData(); // 结合 (平均) pose.yaw = (data_var[0] + data_conv[0]) / 2.0f; pose.pitch = (data_var[1] + data_conv[1]) / 2.0f; pose.roll = (data_var[2] + data_conv[2]) / 2.0f; return true; } // --- 步骤 4: 关键点检测 (来自 facelandmarks5er.py) --- void FacePipeline::preprocess_landmark_net1(const cv::Mat& img, std::vector& blob_data) { cv::Mat resized, gray_img; cv::resize(img, resized, cv::Size(m_lm1_input_shape[3], m_lm1_input_shape[2])); // 112x112 cv::cvtColor(resized, gray_img, cv::COLOR_BGR2GRAY); // // 归一化: 无 (0-255) const float mean[1] = {0.0f}; const float std[1] = {1.0f}; image_to_blob(gray_img, blob_data, mean, std); } // C++ 转译 facelandmarks5er.py::shape_index_process std::vector FacePipeline::shape_index_process(const Ort::Value& feat_val, const Ort::Value& pos_val) { auto feat_shape = feat_val.GetTensorTypeAndShapeInfo().GetShape(); auto pos_shape = pos_val.GetTensorTypeAndShapeInfo().GetShape(); const float* feat_data = feat_val.GetTensorData(); const float* pos_data = pos_val.GetTensorData(); long feat_n = feat_shape[0]; // 1 long feat_c = feat_shape[1]; long feat_h = feat_shape[2]; long feat_w = feat_shape[3]; long pos_n = pos_shape[0]; // 1 long landmark_x2 = pos_shape[1]; // 10 int landmark_num = landmark_x2 / 2; // 5 float m_origin[] = {112.0f, 112.0f}; float m_origin_patch[] = {15.0f, 15.0f}; int x_patch_h = (int)(m_origin_patch[0] * feat_h / m_origin[0] + 0.5f); int x_patch_w = (int)(m_origin_patch[1] * feat_w / m_origin[1] + 0.5f); int feat_patch_h = x_patch_h; int feat_patch_w = x_patch_w; float r_h = (feat_patch_h - 1) / 2.0f; float r_w = (feat_patch_w - 1) / 2.0f; std::vector out_shape = {feat_n, feat_c, x_patch_h, (long)landmark_num, x_patch_w}; std::vector buff(feat_n * feat_c * x_patch_h * landmark_num * x_patch_w, 0.0f); for (int i = 0; i < landmark_num; ++i) { for (int n = 0; n < feat_n; ++n) { float y_pos = pos_data[n * landmark_x2 + 2 * i + 1]; float x_pos = pos_data[n * landmark_x2 + 2 * i]; int y = (int)(y_pos * (feat_h - 1) - r_h + 0.5f); int x = (int)(x_pos * (feat_w - 1) - r_w + 0.5f); for (int c = 0; c < feat_c; ++c) { for (int ph = 0; ph < feat_patch_h; ++ph) { for (int pw = 0; pw < feat_patch_w; ++pw) { int y_p = y + ph; int x_p = x + pw; long out_idx = n * (feat_c * x_patch_h * landmark_num * x_patch_w) + c * (x_patch_h * landmark_num * x_patch_w) + ph * (landmark_num * x_patch_w) + i * (x_patch_w) + pw; if (y_p < 0 || y_p >= feat_h || x_p < 0 || x_p >= feat_w) { buff[out_idx] = 0.0f; } else { long feat_idx = n * (feat_c * feat_h * feat_w) + c * (feat_h * feat_w) + y_p * (feat_w) + x_p; buff[out_idx] = feat_data[feat_idx]; } } } } } } return buff; } bool FacePipeline::RunLandmark(const cv::Mat& image, const FaceBox& box, FaceLandmark& landmark) { // 1. 裁剪人脸 cv::Rect face_rect_raw(box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1); int pad_top = std::max(0, -face_rect_raw.y); int pad_bottom = std::max(0, (face_rect_raw.y + face_rect_raw.height) - image.rows); int pad_left = std::max(0, -face_rect_raw.x); int pad_right = std::max(0, (face_rect_raw.x + face_rect_raw.width) - image.cols); cv::Mat face_crop_padded; cv::copyMakeBorder(image, face_crop_padded, pad_top, pad_bottom, pad_left, pad_right, cv::BORDER_CONSTANT, cv::Scalar(0,0,0)); cv::Rect face_rect_padded(face_rect_raw.x + pad_left, face_rect_raw.y + pad_top, face_rect_raw.width, face_rect_raw.height); cv::Mat face_crop = face_crop_padded(face_rect_padded); // 2. 预处理 Net1 preprocess_landmark_net1(face_crop, m_blob_buffer); auto input_tensor_net1 = create_tensor(m_blob_buffer, m_lm1_input_shape); // 3. 运行 Net1 auto output_net1 = m_session_landmarker1->Run(Ort::RunOptions{nullptr}, m_lm1_input_names.data(), &input_tensor_net1, 1, m_lm1_output_names.data(), 2); // 2 outputs // 4. Shape Index Process std::vector shape_index_blob = shape_index_process(output_net1[0], output_net1[1]); // 5. 准备 Net2 输入 auto input_tensor_net2 = Ort::Value::CreateTensor(m_memory_info, shape_index_blob.data(), shape_index_blob.size(), m_lm2_input_shape.data(), m_lm2_input_shape.size()); // 6. 运行 Net2 auto output_net2 = m_session_landmarker2->Run(Ort::RunOptions{nullptr}, m_lm2_input_names.data(), &input_tensor_net2, 1, m_lm2_output_names.data(), 1); // 7. 后处理 const float* data_net1_pos = output_net1[1].GetTensorData(); const float* data_net2 = output_net2[0].GetTensorData(); auto shape_net1_pos = output_net1[1].GetTensorTypeAndShapeInfo().GetShape(); // [1, 10] int landmark_x2 = shape_net1_pos[1]; float scale_x = (box.x2 - box.x1) / 112.0f; float scale_y = (box.y2 - box.y1) / 112.0f; for (int i = 0; i < 5; ++i) { float x_norm = (data_net2[i * 2 + 0] + data_net1_pos[i * 2 + 0]) * 112.0f; float y_norm = (data_net2[i * 2 + 1] + data_net1_pos[i * 2 + 1]) * 112.0f; float x = box.x1 + x_norm * scale_x; float y = box.y1 + y_norm * scale_y; x = std::max(0.01f, std::min(x, (float)image.cols - 0.01f)); y = std::max(0.01f, std::min(y, (float)image.rows - 0.01f)); landmark.points[i] = cv::Point2f(x, y); } return true; } // --- 步骤 5: 人脸对齐 (来自 facealign.py) --- cv::Mat FacePipeline::RunAlignment(const cv::Mat& image, const FaceLandmark& landmark) { // (align) std::vector src_points; std::vector dst_points; for (int i = 0; i < 5; ++i) { src_points.push_back(landmark.points[i]); dst_points.push_back(cv::Point2f(m_landmark_template.at(i, 0), m_landmark_template.at(i, 1))); } // (transformation_maker) -> estimateAffinePartial2D cv::Mat transform_matrix = cv::estimateAffinePartial2D(src_points, dst_points); cv::Mat aligned_face; // (spatial_transform) -> warpAffine // (crop_width, crop_height = 256, 256) cv::warpAffine(image, aligned_face, transform_matrix, m_align_output_size, cv::INTER_LINEAR); return aligned_face; } // --- 步骤 6: 特征提取 (来自 facerecoger.py) --- void FacePipeline::preprocess_recognition(const cv::Mat& img, std::vector& blob_data) { cv::Mat resized, rgb_img; // (resize to 248, 248) cv::resize(img, resized, cv::Size(m_rec_input_shape[3], m_rec_input_shape[2])); // (BGR -> RGB) cv::cvtColor(resized, rgb_img, cv::COLOR_BGR2RGB); // 归一化: 无 (0-255) const float mean[3] = {0.0f, 0.0f, 0.0f}; const float std[3] = {1.0f, 1.0f, 1.0f}; image_to_blob(rgb_img, blob_data, mean, std); } void FacePipeline::normalize_sqrt_l2(std::vector& v) { // (temp_result = np.sqrt(pred_result[0])) double norm = 0.0; for (float& val : v) { val = std::sqrt(std::max(0.0f, val)); // 取 sqrt norm += val * val; } // (norm = temp_result / np.linalg.norm(...)) if (norm > 1e-6) { norm = std::sqrt(norm); for (float& val : v) { val = static_cast(val / norm); } } } bool FacePipeline::RunRecognition(const cv::Mat& aligned_face, std::vector& feature) { preprocess_recognition(aligned_face, m_blob_buffer); auto input_tensor = create_tensor(m_blob_buffer, m_rec_input_shape); auto output_tensors = m_session_recognizer->Run(Ort::RunOptions{nullptr}, m_rec_input_names.data(), &input_tensor, 1, m_rec_output_names.data(), 1); long feature_dim = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape()[1]; const float* output_data = output_tensors[0].GetTensorData(); feature.resize(feature_dim); memcpy(feature.data(), output_data, feature_dim * sizeof(float)); // (后处理: SQRT-L2 Norm) normalize_sqrt_l2(feature); return true; }