Vehicle_Road_Counter/src/videoService/video_pipeline.cpp

161 lines
4.7 KiB
C++
Raw Normal View History

#include "video_pipeline.hpp"
#include <chrono>
VideoPipeline::VideoPipeline() : running_(false) {}
VideoPipeline::~VideoPipeline() {
Stop();
}
void VideoPipeline::Start(const std::string& inputUrl, const std::string& outputUrl) {
if (running_)
return;
running_ = true;
spdlog::info("Starting VideoPipeline with Input: {}", inputUrl);
processingThread_ = std::thread(&VideoPipeline::processLoop, this, inputUrl, outputUrl);
}
void VideoPipeline::Stop() {
if (!running_)
return;
running_ = false;
if (processingThread_.joinable()) {
processingThread_.join();
}
spdlog::info("VideoPipeline Stopped.");
}
std::vector<DetectionResult> VideoPipeline::mockInference(const cv::Mat& frame) {
std::vector<DetectionResult> results;
static int dummyX = 100;
static int direction = 5;
// 简单的移动逻辑,模拟每帧的变化
dummyX += direction;
if (dummyX > frame.cols - 200 || dummyX < 0)
direction *= -1;
DetectionResult res;
res.x = dummyX;
res.y = 200;
res.width = 150;
res.height = 300;
res.label = "EV CAR";
res.confidence = 0.95f;
results.push_back(res);
return results;
}
void VideoPipeline::drawOverlay(cv::Mat& frame, const std::vector<DetectionResult>& results) {
for (const auto& res : results) {
cv::rectangle(frame, cv::Rect(res.x, res.y, res.width, res.height), cv::Scalar(0, 255, 0),
2);
std::string text = res.label + " " + std::to_string(res.confidence).substr(0, 4);
cv::putText(frame, text, cv::Point(res.x, res.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.6,
cv::Scalar(0, 255, 0), 2);
}
cv::putText(frame, "RK3588 H.264 @ 20FPS", cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 1.0,
cv::Scalar(0, 0, 255), 2);
}
void VideoPipeline::processLoop(std::string inputUrl, std::string outputUrl) {
cv::VideoCapture cap;
// [MOD] 尝试设置 FFmpeg 后端参数以减少延迟(可选,依赖于 OpenCV 版本)
// os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "rtsp_transport;tcp" //
// C++中通常通过API设置或环境变量
cap.open(inputUrl);
if (!cap.isOpened()) {
spdlog::error("Failed to open input RTSP stream: {}", inputUrl);
running_ = false;
return;
}
// [MOD] 强制指定 20 FPS
// 虽然 cap.get 可能读取到 20但为了稳健性我们在输出端强制使用 20
const double TARGET_FPS = 20.0;
int width = cap.get(cv::CAP_PROP_FRAME_WIDTH);
int height = cap.get(cv::CAP_PROP_FRAME_HEIGHT);
spdlog::info("Video Source: {}x{} | Input FPS: {} | Target Output FPS: {}", width, height,
cap.get(cv::CAP_PROP_FPS), TARGET_FPS);
// === [MOD] 优化后的 GStreamer H.264 推流管道 ===
// 1. appsrc: OpenCV 数据源
// 2. videoconvert: 像素格式转换
// 3. capsfilter: 强制转换为 NV12 (RK3588 编码器首选格式) 并 锁定 20/1 帧率
// 4. mpph264enc: Rockchip 硬件 H.264 编码器
// 5. h264parse: 解析 NALU对 RTSP 传输至关重要
// 6. rtspclientsink: 推流到 MediaMTX
std::stringstream pipeline;
pipeline << "appsrc ! "
<< "videoconvert ! "
<< "video/x-raw,format=NV12,width=" << width << ",height=" << height
<< ",framerate=20/1 ! "
<< "mpph264enc ! "
<< "h264parse ! "
<< "rtspclientsink location=" << outputUrl
<< " protocols=tcp"; // [MOD] 使用 TCP 协议推流更稳定
spdlog::debug("GStreamer Pipeline: {}", pipeline.str());
cv::VideoWriter writer;
// [MOD] 在 open 时传入 TARGET_FPS (20.0)
writer.open(pipeline.str(), cv::CAP_GSTREAMER, 0, TARGET_FPS, cv::Size(width, height), true);
if (!writer.isOpened()) {
spdlog::error("Failed to initialize VideoWriter. Check GStreamer plugins.");
}
cv::Mat frame;
// [MOD] 帧率控制辅助
// 如果摄像头实际输出稍微快于或慢于20帧OpenCV的阻塞读取会自动对齐
// 但如果源断流,我们需要处理
while (running_) {
// [MOD] 记录时间以监测实际处理耗时
auto start = std::chrono::steady_clock::now();
if (!cap.read(frame)) {
spdlog::warn("Frame read failed. Reconnecting...");
std::this_thread::sleep_for(std::chrono::seconds(1));
cap.release();
cap.open(inputUrl);
continue;
}
if (frame.empty())
continue;
// 1. 算法处理
auto results = mockInference(frame);
// 2. 绘制叠加
drawOverlay(frame, results);
// 3. 硬件编码推流
if (writer.isOpened()) {
writer.write(frame);
}
// 简单监控处理延迟
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> elapsed = end - start;
// 如果处理太快(例如只是简单的画框,几毫秒就完了),
// 这里的 cap.read 会自动阻塞等待下一帧,所以不需要手动 sleep。
// 只要输入是 20fps这个循环就会被输入流“带”着以 20fps 运行。
}
cap.release();
writer.release();
}