677 lines
32 KiB
Python
677 lines
32 KiB
Python
|
|
# ------------------------------------------------------------------------
|
||
|
|
# Copyright (c) 2021 megvii-model. All Rights Reserved.
|
||
|
|
# ------------------------------------------------------------------------
|
||
|
|
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
||
|
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
||
|
|
# ------------------------------------------------------------------------
|
||
|
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
||
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
|
# ------------------------------------------------------------------------
|
||
|
|
|
||
|
|
"""
|
||
|
|
DETR model and criterion classes.
|
||
|
|
"""
|
||
|
|
import copy
|
||
|
|
import math
|
||
|
|
import numpy as np
|
||
|
|
import torch
|
||
|
|
import torch.nn.functional as F
|
||
|
|
from torch import nn, Tensor
|
||
|
|
from typing import List
|
||
|
|
|
||
|
|
from util import box_ops
|
||
|
|
from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
|
||
|
|
accuracy, get_world_size, interpolate, get_rank,
|
||
|
|
is_dist_avail_and_initialized, inverse_sigmoid)
|
||
|
|
|
||
|
|
from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou
|
||
|
|
|
||
|
|
from .backbone import build_backbone
|
||
|
|
from .matcher import build_matcher
|
||
|
|
from .deformable_transformer_plus import build_deforamble_transformer
|
||
|
|
from .qim import build as build_query_interaction_layer
|
||
|
|
from .memory_bank import build_memory_bank
|
||
|
|
from .deformable_detr import SetCriterion, MLP
|
||
|
|
from .segmentation import sigmoid_focal_loss
|
||
|
|
|
||
|
|
|
||
|
|
class ClipMatcher(SetCriterion):
|
||
|
|
def __init__(self, num_classes,
|
||
|
|
matcher,
|
||
|
|
weight_dict,
|
||
|
|
losses):
|
||
|
|
""" Create the criterion.
|
||
|
|
Parameters:
|
||
|
|
num_classes: number of object categories, omitting the special no-object category
|
||
|
|
matcher: module able to compute a matching between targets and proposals
|
||
|
|
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
||
|
|
eos_coef: relative classification weight applied to the no-object category
|
||
|
|
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
||
|
|
"""
|
||
|
|
super().__init__(num_classes, matcher, weight_dict, losses)
|
||
|
|
self.num_classes = num_classes
|
||
|
|
self.matcher = matcher
|
||
|
|
self.weight_dict = weight_dict
|
||
|
|
self.losses = losses
|
||
|
|
self.focal_loss = True
|
||
|
|
self.losses_dict = {}
|
||
|
|
self._current_frame_idx = 0
|
||
|
|
|
||
|
|
def initialize_for_single_clip(self, gt_instances: List[Instances]):
|
||
|
|
self.gt_instances = gt_instances
|
||
|
|
self.num_samples = 0
|
||
|
|
self.sample_device = None
|
||
|
|
self._current_frame_idx = 0
|
||
|
|
self.losses_dict = {}
|
||
|
|
|
||
|
|
def _step(self):
|
||
|
|
self._current_frame_idx += 1
|
||
|
|
|
||
|
|
def calc_loss_for_track_scores(self, track_instances: Instances):
|
||
|
|
frame_id = self._current_frame_idx - 1
|
||
|
|
gt_instances = self.gt_instances[frame_id]
|
||
|
|
outputs = {
|
||
|
|
'pred_logits': track_instances.track_scores[None],
|
||
|
|
}
|
||
|
|
device = track_instances.track_scores.device
|
||
|
|
|
||
|
|
num_tracks = len(track_instances)
|
||
|
|
src_idx = torch.arange(num_tracks, dtype=torch.long, device=device)
|
||
|
|
tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks
|
||
|
|
|
||
|
|
track_losses = self.get_loss('labels',
|
||
|
|
outputs=outputs,
|
||
|
|
gt_instances=[gt_instances],
|
||
|
|
indices=[(src_idx, tgt_idx)],
|
||
|
|
num_boxes=1)
|
||
|
|
self.losses_dict.update(
|
||
|
|
{'frame_{}_track_{}'.format(frame_id, key): value for key, value in
|
||
|
|
track_losses.items()})
|
||
|
|
|
||
|
|
def get_num_boxes(self, num_samples):
|
||
|
|
num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device)
|
||
|
|
if is_dist_avail_and_initialized():
|
||
|
|
torch.distributed.all_reduce(num_boxes)
|
||
|
|
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
|
||
|
|
return num_boxes
|
||
|
|
|
||
|
|
def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs):
|
||
|
|
loss_map = {
|
||
|
|
'labels': self.loss_labels,
|
||
|
|
'cardinality': self.loss_cardinality,
|
||
|
|
'boxes': self.loss_boxes,
|
||
|
|
}
|
||
|
|
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
||
|
|
return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs)
|
||
|
|
|
||
|
|
def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes):
|
||
|
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
||
|
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
||
|
|
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
|
||
|
|
"""
|
||
|
|
# We ignore the regression loss of the track-disappear slots.
|
||
|
|
#TODO: Make this filter process more elegant.
|
||
|
|
filtered_idx = []
|
||
|
|
for src_per_img, tgt_per_img in indices:
|
||
|
|
keep = tgt_per_img != -1
|
||
|
|
filtered_idx.append((src_per_img[keep], tgt_per_img[keep]))
|
||
|
|
indices = filtered_idx
|
||
|
|
idx = self._get_src_permutation_idx(indices)
|
||
|
|
src_boxes = outputs['pred_boxes'][idx]
|
||
|
|
target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0)
|
||
|
|
|
||
|
|
# for pad target, don't calculate regression loss, judged by whether obj_id=-1
|
||
|
|
target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16)
|
||
|
|
mask = (target_obj_ids != -1)
|
||
|
|
|
||
|
|
loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none')
|
||
|
|
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
|
||
|
|
box_ops.box_cxcywh_to_xyxy(src_boxes[mask]),
|
||
|
|
box_ops.box_cxcywh_to_xyxy(target_boxes[mask])))
|
||
|
|
|
||
|
|
losses = {}
|
||
|
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
||
|
|
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
||
|
|
|
||
|
|
return losses
|
||
|
|
|
||
|
|
def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False):
|
||
|
|
"""Classification loss (NLL)
|
||
|
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
||
|
|
"""
|
||
|
|
src_logits = outputs['pred_logits']
|
||
|
|
idx = self._get_src_permutation_idx(indices)
|
||
|
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
|
||
|
|
dtype=torch.int64, device=src_logits.device)
|
||
|
|
# The matched gt for disappear track query is set -1.
|
||
|
|
labels = []
|
||
|
|
for gt_per_img, (_, J) in zip(gt_instances, indices):
|
||
|
|
labels_per_img = torch.ones_like(J)
|
||
|
|
# set labels of track-appear slots to 0.
|
||
|
|
if len(gt_per_img) > 0:
|
||
|
|
labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]]
|
||
|
|
labels.append(labels_per_img)
|
||
|
|
target_classes_o = torch.cat(labels)
|
||
|
|
target_classes[idx] = target_classes_o
|
||
|
|
if self.focal_loss:
|
||
|
|
gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class
|
||
|
|
gt_labels_target = gt_labels_target.to(src_logits)
|
||
|
|
loss_ce = sigmoid_focal_loss(src_logits.flatten(1),
|
||
|
|
gt_labels_target.flatten(1),
|
||
|
|
alpha=0.25,
|
||
|
|
gamma=2,
|
||
|
|
num_boxes=num_boxes, mean_in_dim1=False)
|
||
|
|
loss_ce = loss_ce.sum()
|
||
|
|
else:
|
||
|
|
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
|
||
|
|
losses = {'loss_ce': loss_ce}
|
||
|
|
|
||
|
|
if log:
|
||
|
|
# TODO this should probably be a separate loss, not hacked in this one here
|
||
|
|
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
|
||
|
|
|
||
|
|
return losses
|
||
|
|
|
||
|
|
def match_for_single_frame(self, outputs: dict):
|
||
|
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
|
||
|
|
|
||
|
|
gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image.
|
||
|
|
track_instances: Instances = outputs_without_aux['track_instances']
|
||
|
|
pred_logits_i = track_instances.pred_logits # predicted logits of i-th image.
|
||
|
|
pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image.
|
||
|
|
|
||
|
|
obj_idxes = gt_instances_i.obj_ids
|
||
|
|
obj_idxes_list = obj_idxes.detach().cpu().numpy().tolist()
|
||
|
|
obj_idx_to_gt_idx = {obj_idx: gt_idx for gt_idx, obj_idx in enumerate(obj_idxes_list)}
|
||
|
|
outputs_i = {
|
||
|
|
'pred_logits': pred_logits_i.unsqueeze(0),
|
||
|
|
'pred_boxes': pred_boxes_i.unsqueeze(0),
|
||
|
|
}
|
||
|
|
|
||
|
|
# step1. inherit and update the previous tracks.
|
||
|
|
num_disappear_track = 0
|
||
|
|
for j in range(len(track_instances)):
|
||
|
|
obj_id = track_instances.obj_idxes[j].item()
|
||
|
|
# set new target idx.
|
||
|
|
if obj_id >= 0:
|
||
|
|
if obj_id in obj_idx_to_gt_idx:
|
||
|
|
track_instances.matched_gt_idxes[j] = obj_idx_to_gt_idx[obj_id]
|
||
|
|
else:
|
||
|
|
num_disappear_track += 1
|
||
|
|
track_instances.matched_gt_idxes[j] = -1 # track-disappear case.
|
||
|
|
else:
|
||
|
|
track_instances.matched_gt_idxes[j] = -1
|
||
|
|
|
||
|
|
full_track_idxes = torch.arange(len(track_instances), dtype=torch.long).to(pred_logits_i.device)
|
||
|
|
matched_track_idxes = (track_instances.obj_idxes >= 0) # occu
|
||
|
|
prev_matched_indices = torch.stack(
|
||
|
|
[full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1).to(
|
||
|
|
pred_logits_i.device)
|
||
|
|
|
||
|
|
# step2. select the unmatched slots.
|
||
|
|
# note that the FP tracks whose obj_idxes are -2 will not be selected here.
|
||
|
|
unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1]
|
||
|
|
|
||
|
|
# step3. select the untracked gt instances (new tracks).
|
||
|
|
tgt_indexes = track_instances.matched_gt_idxes
|
||
|
|
tgt_indexes = tgt_indexes[tgt_indexes != -1]
|
||
|
|
|
||
|
|
tgt_state = torch.zeros(len(gt_instances_i)).to(pred_logits_i.device)
|
||
|
|
tgt_state[tgt_indexes] = 1
|
||
|
|
untracked_tgt_indexes = torch.arange(len(gt_instances_i)).to(pred_logits_i.device)[tgt_state == 0]
|
||
|
|
# untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i))
|
||
|
|
untracked_gt_instances = gt_instances_i[untracked_tgt_indexes]
|
||
|
|
|
||
|
|
def match_for_single_decoder_layer(unmatched_outputs, matcher):
|
||
|
|
new_track_indices = matcher(unmatched_outputs,
|
||
|
|
[untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)]
|
||
|
|
|
||
|
|
src_idx = new_track_indices[0][0]
|
||
|
|
tgt_idx = new_track_indices[0][1]
|
||
|
|
# concat src and tgt.
|
||
|
|
new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]],
|
||
|
|
dim=1).to(pred_logits_i.device)
|
||
|
|
return new_matched_indices
|
||
|
|
|
||
|
|
# step4. do matching between the unmatched slots and GTs.
|
||
|
|
unmatched_outputs = {
|
||
|
|
'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0),
|
||
|
|
'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0),
|
||
|
|
}
|
||
|
|
new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher)
|
||
|
|
|
||
|
|
# step5. update obj_idxes according to the new matching result.
|
||
|
|
track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long()
|
||
|
|
track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1]
|
||
|
|
|
||
|
|
# step6. calculate iou.
|
||
|
|
active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0)
|
||
|
|
active_track_boxes = track_instances.pred_boxes[active_idxes]
|
||
|
|
if len(active_track_boxes) > 0:
|
||
|
|
gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]]
|
||
|
|
active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes)
|
||
|
|
gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes)
|
||
|
|
track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes))
|
||
|
|
|
||
|
|
# step7. merge the unmatched pairs and the matched pairs.
|
||
|
|
matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0)
|
||
|
|
|
||
|
|
# step8. calculate losses.
|
||
|
|
self.num_samples += len(gt_instances_i) + num_disappear_track
|
||
|
|
self.sample_device = pred_logits_i.device
|
||
|
|
for loss in self.losses:
|
||
|
|
new_track_loss = self.get_loss(loss,
|
||
|
|
outputs=outputs_i,
|
||
|
|
gt_instances=[gt_instances_i],
|
||
|
|
indices=[(matched_indices[:, 0], matched_indices[:, 1])],
|
||
|
|
num_boxes=1)
|
||
|
|
self.losses_dict.update(
|
||
|
|
{'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()})
|
||
|
|
|
||
|
|
if 'aux_outputs' in outputs:
|
||
|
|
for i, aux_outputs in enumerate(outputs['aux_outputs']):
|
||
|
|
unmatched_outputs_layer = {
|
||
|
|
'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0),
|
||
|
|
'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0),
|
||
|
|
}
|
||
|
|
new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher)
|
||
|
|
matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0)
|
||
|
|
for loss in self.losses:
|
||
|
|
if loss == 'masks':
|
||
|
|
# Intermediate masks losses are too costly to compute, we ignore them.
|
||
|
|
continue
|
||
|
|
l_dict = self.get_loss(loss,
|
||
|
|
aux_outputs,
|
||
|
|
gt_instances=[gt_instances_i],
|
||
|
|
indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])],
|
||
|
|
num_boxes=1, )
|
||
|
|
self.losses_dict.update(
|
||
|
|
{'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in
|
||
|
|
l_dict.items()})
|
||
|
|
self._step()
|
||
|
|
return track_instances
|
||
|
|
|
||
|
|
def forward(self, outputs, input_data: dict):
|
||
|
|
# losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict].
|
||
|
|
losses = outputs.pop("losses_dict")
|
||
|
|
num_samples = self.get_num_boxes(self.num_samples)
|
||
|
|
for loss_name, loss in losses.items():
|
||
|
|
losses[loss_name] /= num_samples
|
||
|
|
return losses
|
||
|
|
|
||
|
|
|
||
|
|
class RuntimeTrackerBase(object):
|
||
|
|
def __init__(self, score_thresh=0.8, filter_score_thresh=0.6, miss_tolerance=5):
|
||
|
|
self.score_thresh = score_thresh
|
||
|
|
self.filter_score_thresh = filter_score_thresh
|
||
|
|
self.miss_tolerance = miss_tolerance
|
||
|
|
self.max_obj_id = 0
|
||
|
|
|
||
|
|
def clear(self):
|
||
|
|
self.max_obj_id = 0
|
||
|
|
|
||
|
|
def update(self, track_instances: Instances):
|
||
|
|
track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
|
||
|
|
for i in range(len(track_instances)):
|
||
|
|
if track_instances.obj_idxes[i] == -1 and track_instances.scores[i] >= self.score_thresh:
|
||
|
|
# print("track {} has score {}, assign obj_id {}".format(i, track_instances.scores[i], self.max_obj_id))
|
||
|
|
track_instances.obj_idxes[i] = self.max_obj_id
|
||
|
|
self.max_obj_id += 1
|
||
|
|
elif track_instances.obj_idxes[i] >= 0 and track_instances.scores[i] < self.filter_score_thresh:
|
||
|
|
track_instances.disappear_time[i] += 1
|
||
|
|
if track_instances.disappear_time[i] >= self.miss_tolerance:
|
||
|
|
# Set the obj_id to -1.
|
||
|
|
# Then this track will be removed by TrackEmbeddingLayer.
|
||
|
|
track_instances.obj_idxes[i] = -1
|
||
|
|
|
||
|
|
|
||
|
|
class TrackerPostProcess(nn.Module):
|
||
|
|
""" This module converts the model's output into the format expected by the coco api"""
|
||
|
|
def __init__(self):
|
||
|
|
super().__init__()
|
||
|
|
|
||
|
|
@torch.no_grad()
|
||
|
|
def forward(self, track_instances: Instances, target_size) -> Instances:
|
||
|
|
""" Perform the computation
|
||
|
|
Parameters:
|
||
|
|
outputs: raw outputs of the model
|
||
|
|
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
||
|
|
For evaluation, this must be the original image size (before any data augmentation)
|
||
|
|
For visualization, this should be the image size after data augment, but before padding
|
||
|
|
"""
|
||
|
|
out_logits = track_instances.pred_logits
|
||
|
|
out_bbox = track_instances.pred_boxes
|
||
|
|
|
||
|
|
prob = out_logits.sigmoid()
|
||
|
|
# prob = out_logits[...,:1].sigmoid()
|
||
|
|
scores, labels = prob.max(-1)
|
||
|
|
|
||
|
|
# convert to [x0, y0, x1, y1] format
|
||
|
|
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
||
|
|
# and from relative [0, 1] to absolute [0, height] coordinates
|
||
|
|
img_h, img_w = target_size
|
||
|
|
scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes)
|
||
|
|
boxes = boxes * scale_fct[None, :]
|
||
|
|
|
||
|
|
track_instances.boxes = boxes
|
||
|
|
track_instances.scores = scores
|
||
|
|
track_instances.labels = labels
|
||
|
|
# track_instances.remove('pred_logits')
|
||
|
|
# track_instances.remove('pred_boxes')
|
||
|
|
return track_instances
|
||
|
|
|
||
|
|
|
||
|
|
def _get_clones(module, N):
|
||
|
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||
|
|
|
||
|
|
|
||
|
|
class MOTR(nn.Module):
|
||
|
|
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed,
|
||
|
|
aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None):
|
||
|
|
""" Initializes the model.
|
||
|
|
Parameters:
|
||
|
|
backbone: torch module of the backbone to be used. See backbone.py
|
||
|
|
transformer: torch module of the transformer architecture. See transformer.py
|
||
|
|
num_classes: number of object classes
|
||
|
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
||
|
|
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
||
|
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||
|
|
with_box_refine: iterative bounding box refinement
|
||
|
|
two_stage: two-stage Deformable DETR
|
||
|
|
"""
|
||
|
|
super().__init__()
|
||
|
|
self.num_queries = num_queries
|
||
|
|
self.track_embed = track_embed
|
||
|
|
self.transformer = transformer
|
||
|
|
hidden_dim = transformer.d_model
|
||
|
|
self.num_classes = num_classes
|
||
|
|
self.class_embed = nn.Linear(hidden_dim, num_classes)
|
||
|
|
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
||
|
|
self.num_feature_levels = num_feature_levels
|
||
|
|
if not two_stage:
|
||
|
|
self.query_embed = nn.Embedding(num_queries, hidden_dim * 2)
|
||
|
|
if num_feature_levels > 1:
|
||
|
|
num_backbone_outs = len(backbone.strides)
|
||
|
|
input_proj_list = []
|
||
|
|
for _ in range(num_backbone_outs):
|
||
|
|
in_channels = backbone.num_channels[_]
|
||
|
|
input_proj_list.append(nn.Sequential(
|
||
|
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
||
|
|
nn.GroupNorm(32, hidden_dim),
|
||
|
|
))
|
||
|
|
for _ in range(num_feature_levels - num_backbone_outs):
|
||
|
|
input_proj_list.append(nn.Sequential(
|
||
|
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
||
|
|
nn.GroupNorm(32, hidden_dim),
|
||
|
|
))
|
||
|
|
in_channels = hidden_dim
|
||
|
|
self.input_proj = nn.ModuleList(input_proj_list)
|
||
|
|
else:
|
||
|
|
self.input_proj = nn.ModuleList([
|
||
|
|
nn.Sequential(
|
||
|
|
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1),
|
||
|
|
nn.GroupNorm(32, hidden_dim),
|
||
|
|
)])
|
||
|
|
self.backbone = backbone
|
||
|
|
self.aux_loss = aux_loss
|
||
|
|
self.with_box_refine = with_box_refine
|
||
|
|
self.two_stage = two_stage
|
||
|
|
|
||
|
|
prior_prob = 0.01
|
||
|
|
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
||
|
|
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
|
||
|
|
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
|
||
|
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
|
||
|
|
for proj in self.input_proj:
|
||
|
|
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
||
|
|
nn.init.constant_(proj[0].bias, 0)
|
||
|
|
|
||
|
|
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
|
||
|
|
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
|
||
|
|
if with_box_refine:
|
||
|
|
self.class_embed = _get_clones(self.class_embed, num_pred)
|
||
|
|
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
|
||
|
|
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
|
||
|
|
# hack implementation for iterative bounding box refinement
|
||
|
|
self.transformer.decoder.bbox_embed = self.bbox_embed
|
||
|
|
else:
|
||
|
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
|
||
|
|
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
|
||
|
|
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
|
||
|
|
self.transformer.decoder.bbox_embed = None
|
||
|
|
if two_stage:
|
||
|
|
# hack implementation for two-stage
|
||
|
|
self.transformer.decoder.class_embed = self.class_embed
|
||
|
|
for box_embed in self.bbox_embed:
|
||
|
|
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
|
||
|
|
self.post_process = TrackerPostProcess()
|
||
|
|
self.track_base = RuntimeTrackerBase()
|
||
|
|
self.criterion = criterion
|
||
|
|
self.memory_bank = memory_bank
|
||
|
|
self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length
|
||
|
|
|
||
|
|
def _generate_empty_tracks(self):
|
||
|
|
track_instances = Instances((1, 1))
|
||
|
|
num_queries, dim = self.query_embed.weight.shape # (300, 512)
|
||
|
|
device = self.query_embed.weight.device
|
||
|
|
track_instances.ref_pts = self.transformer.reference_points(self.query_embed.weight[:, :dim // 2])
|
||
|
|
track_instances.query_pos = self.query_embed.weight
|
||
|
|
track_instances.output_embedding = torch.zeros((num_queries, dim >> 1), device=device)
|
||
|
|
track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
|
||
|
|
track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
|
||
|
|
track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device)
|
||
|
|
track_instances.iou = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
|
||
|
|
track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
|
||
|
|
track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
|
||
|
|
track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device)
|
||
|
|
track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device)
|
||
|
|
|
||
|
|
mem_bank_len = self.mem_bank_len
|
||
|
|
track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, dim // 2), dtype=torch.float32, device=device)
|
||
|
|
track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device)
|
||
|
|
track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device)
|
||
|
|
|
||
|
|
return track_instances.to(self.query_embed.weight.device)
|
||
|
|
|
||
|
|
def clear(self):
|
||
|
|
self.track_base.clear()
|
||
|
|
|
||
|
|
@torch.jit.unused
|
||
|
|
def _set_aux_loss(self, outputs_class, outputs_coord):
|
||
|
|
# this is a workaround to make torchscript happy, as torchscript
|
||
|
|
# doesn't support dictionary with non-homogeneous values, such
|
||
|
|
# as a dict having both a Tensor and a list.
|
||
|
|
return [{'pred_logits': a, 'pred_boxes': b, }
|
||
|
|
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
||
|
|
|
||
|
|
def _forward_single_image(self, samples, track_instances: Instances):
|
||
|
|
features, pos = self.backbone(samples)
|
||
|
|
src, mask = features[-1].decompose()
|
||
|
|
assert mask is not None
|
||
|
|
|
||
|
|
srcs = []
|
||
|
|
masks = []
|
||
|
|
for l, feat in enumerate(features):
|
||
|
|
src, mask = feat.decompose()
|
||
|
|
srcs.append(self.input_proj[l](src))
|
||
|
|
masks.append(mask)
|
||
|
|
assert mask is not None
|
||
|
|
|
||
|
|
if self.num_feature_levels > len(srcs):
|
||
|
|
_len_srcs = len(srcs)
|
||
|
|
for l in range(_len_srcs, self.num_feature_levels):
|
||
|
|
if l == _len_srcs:
|
||
|
|
src = self.input_proj[l](features[-1].tensors)
|
||
|
|
else:
|
||
|
|
src = self.input_proj[l](srcs[-1])
|
||
|
|
m = samples.mask
|
||
|
|
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
||
|
|
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
||
|
|
srcs.append(src)
|
||
|
|
masks.append(mask)
|
||
|
|
pos.append(pos_l)
|
||
|
|
|
||
|
|
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, track_instances.query_pos, ref_pts=track_instances.ref_pts)
|
||
|
|
|
||
|
|
outputs_classes = []
|
||
|
|
outputs_coords = []
|
||
|
|
for lvl in range(hs.shape[0]):
|
||
|
|
if lvl == 0:
|
||
|
|
reference = init_reference
|
||
|
|
else:
|
||
|
|
reference = inter_references[lvl - 1]
|
||
|
|
reference = inverse_sigmoid(reference)
|
||
|
|
outputs_class = self.class_embed[lvl](hs[lvl])
|
||
|
|
tmp = self.bbox_embed[lvl](hs[lvl])
|
||
|
|
if reference.shape[-1] == 4:
|
||
|
|
tmp += reference
|
||
|
|
else:
|
||
|
|
assert reference.shape[-1] == 2
|
||
|
|
tmp[..., :2] += reference
|
||
|
|
outputs_coord = tmp.sigmoid()
|
||
|
|
outputs_classes.append(outputs_class)
|
||
|
|
outputs_coords.append(outputs_coord)
|
||
|
|
outputs_class = torch.stack(outputs_classes)
|
||
|
|
outputs_coord = torch.stack(outputs_coords)
|
||
|
|
|
||
|
|
ref_pts_all = torch.cat([init_reference[None], inter_references[:, :, :, :2]], dim=0)
|
||
|
|
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], 'ref_pts': ref_pts_all[5]}
|
||
|
|
if self.aux_loss:
|
||
|
|
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
|
||
|
|
|
||
|
|
with torch.no_grad():
|
||
|
|
if self.training:
|
||
|
|
track_scores = outputs_class[-1, 0, :].sigmoid().max(dim=-1).values
|
||
|
|
else:
|
||
|
|
track_scores = outputs_class[-1, 0, :, 0].sigmoid()
|
||
|
|
|
||
|
|
track_instances.scores = track_scores
|
||
|
|
track_instances.pred_logits = outputs_class[-1, 0]
|
||
|
|
track_instances.pred_boxes = outputs_coord[-1, 0]
|
||
|
|
track_instances.output_embedding = hs[-1, 0]
|
||
|
|
if self.training:
|
||
|
|
# the track id will be assigned by the mather.
|
||
|
|
out['track_instances'] = track_instances
|
||
|
|
track_instances = self.criterion.match_for_single_frame(out)
|
||
|
|
else:
|
||
|
|
# each track will be assigned an unique global id by the track base.
|
||
|
|
self.track_base.update(track_instances)
|
||
|
|
if self.memory_bank is not None:
|
||
|
|
track_instances = self.memory_bank(track_instances)
|
||
|
|
# track_instances.track_scores = track_instances.track_scores[..., 0]
|
||
|
|
# track_instances.scores = track_instances.track_scores.sigmoid()
|
||
|
|
if self.training:
|
||
|
|
self.criterion.calc_loss_for_track_scores(track_instances)
|
||
|
|
tmp = {}
|
||
|
|
tmp['init_track_instances'] = self._generate_empty_tracks()
|
||
|
|
tmp['track_instances'] = track_instances
|
||
|
|
out_track_instances = self.track_embed(tmp)
|
||
|
|
out['track_instances'] = out_track_instances
|
||
|
|
return out
|
||
|
|
|
||
|
|
@torch.no_grad()
|
||
|
|
def inference_single_image(self, img, ori_img_size, track_instances=None):
|
||
|
|
if not isinstance(img, NestedTensor):
|
||
|
|
img = nested_tensor_from_tensor_list(img)
|
||
|
|
if track_instances is None:
|
||
|
|
track_instances = self._generate_empty_tracks()
|
||
|
|
|
||
|
|
res = self._forward_single_image(img, track_instances=track_instances)
|
||
|
|
|
||
|
|
track_instances = res['track_instances']
|
||
|
|
track_instances = self.post_process(track_instances, ori_img_size)
|
||
|
|
ret = {'track_instances': track_instances}
|
||
|
|
if 'ref_pts' in res:
|
||
|
|
ref_pts = res['ref_pts']
|
||
|
|
img_h, img_w = ori_img_size
|
||
|
|
scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts)
|
||
|
|
ref_pts = ref_pts * scale_fct[None]
|
||
|
|
ret['ref_pts'] = ref_pts
|
||
|
|
return ret
|
||
|
|
|
||
|
|
def forward(self, data: dict):
|
||
|
|
if self.training:
|
||
|
|
self.criterion.initialize_for_single_clip(data['gt_instances'])
|
||
|
|
frames = data['imgs'] # list of Tensor.
|
||
|
|
outputs = {
|
||
|
|
'pred_logits': [],
|
||
|
|
'pred_boxes': [],
|
||
|
|
}
|
||
|
|
|
||
|
|
track_instances = self._generate_empty_tracks()
|
||
|
|
for frame in frames:
|
||
|
|
if not isinstance(frame, NestedTensor):
|
||
|
|
frame = nested_tensor_from_tensor_list([frame])
|
||
|
|
frame_res = self._forward_single_image(frame, track_instances)
|
||
|
|
track_instances = frame_res['track_instances']
|
||
|
|
outputs['pred_logits'].append(frame_res['pred_logits'])
|
||
|
|
outputs['pred_boxes'].append(frame_res['pred_boxes'])
|
||
|
|
|
||
|
|
if not self.training:
|
||
|
|
outputs['track_instances'] = track_instances
|
||
|
|
else:
|
||
|
|
outputs['losses_dict'] = self.criterion.losses_dict
|
||
|
|
return outputs
|
||
|
|
|
||
|
|
|
||
|
|
def build(args):
|
||
|
|
dataset_to_num_classes = {
|
||
|
|
'coco': 91,
|
||
|
|
'coco_panoptic': 250,
|
||
|
|
'e2e_mot': 1,
|
||
|
|
'e2e_joint': 1,
|
||
|
|
'e2e_static_mot': 1
|
||
|
|
}
|
||
|
|
assert args.dataset_file in dataset_to_num_classes
|
||
|
|
num_classes = dataset_to_num_classes[args.dataset_file]
|
||
|
|
device = torch.device(args.device)
|
||
|
|
|
||
|
|
backbone = build_backbone(args)
|
||
|
|
|
||
|
|
transformer = build_deforamble_transformer(args)
|
||
|
|
d_model = transformer.d_model
|
||
|
|
hidden_dim = args.dim_feedforward
|
||
|
|
query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2)
|
||
|
|
|
||
|
|
img_matcher = build_matcher(args)
|
||
|
|
num_frames_per_batch = max(args.sampler_lengths)
|
||
|
|
weight_dict = {}
|
||
|
|
for i in range(num_frames_per_batch):
|
||
|
|
weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef,
|
||
|
|
'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef,
|
||
|
|
'frame_{}_loss_giou'.format(i): args.giou_loss_coef,
|
||
|
|
})
|
||
|
|
|
||
|
|
# TODO this is a hack
|
||
|
|
if args.aux_loss:
|
||
|
|
for i in range(num_frames_per_batch):
|
||
|
|
for j in range(args.dec_layers - 1):
|
||
|
|
weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef,
|
||
|
|
'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef,
|
||
|
|
'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef,
|
||
|
|
})
|
||
|
|
if args.memory_bank_type is not None and len(args.memory_bank_type) > 0:
|
||
|
|
memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2)
|
||
|
|
for i in range(num_frames_per_batch):
|
||
|
|
weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef})
|
||
|
|
else:
|
||
|
|
memory_bank = None
|
||
|
|
losses = ['labels', 'boxes']
|
||
|
|
criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses)
|
||
|
|
criterion.to(device)
|
||
|
|
postprocessors = {}
|
||
|
|
model = MOTR(
|
||
|
|
backbone,
|
||
|
|
transformer,
|
||
|
|
track_embed=query_interaction_layer,
|
||
|
|
num_feature_levels=args.num_feature_levels,
|
||
|
|
num_classes=num_classes,
|
||
|
|
num_queries=args.num_queries,
|
||
|
|
aux_loss=args.aux_loss,
|
||
|
|
criterion=criterion,
|
||
|
|
with_box_refine=args.with_box_refine,
|
||
|
|
two_stage=args.two_stage,
|
||
|
|
memory_bank=memory_bank,
|
||
|
|
)
|
||
|
|
return model, criterion, postprocessors
|