23 lines
777 B
Markdown
23 lines
777 B
Markdown
|
|
# ByteTrack-TensorRT in Python
|
||
|
|
|
||
|
|
## Install TensorRT Toolkit
|
||
|
|
Please follow the [TensorRT Installation Guide](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html) and [torch2trt gitrepo](https://github.com/NVIDIA-AI-IOT/torch2trt) to install TensorRT (Version 7 recommended) and torch2trt.
|
||
|
|
|
||
|
|
## Convert model
|
||
|
|
|
||
|
|
You can convert the Pytorch model “bytetrack_s_mot17” to TensorRT model by running:
|
||
|
|
|
||
|
|
```shell
|
||
|
|
cd <ByteTrack_HOME>
|
||
|
|
python3 tools/trt.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar
|
||
|
|
```
|
||
|
|
|
||
|
|
## Run TensorRT demo
|
||
|
|
|
||
|
|
You can use the converted model_trt.pth to run TensorRT demo with **130 FPS**:
|
||
|
|
|
||
|
|
```shell
|
||
|
|
cd <ByteTrack_HOME>
|
||
|
|
python3 tools/demo_track.py video -f exps/example/mot/yolox_s_mix_det.py --trt --save_result
|
||
|
|
```
|