364 lines
13 KiB
Python
364 lines
13 KiB
Python
|
|
from __future__ import absolute_import
|
|||
|
|
from __future__ import division
|
|||
|
|
from __future__ import print_function
|
|||
|
|
|
|||
|
|
import numpy as np
|
|||
|
|
from sklearn.utils.linear_assignment_ import linear_assignment
|
|||
|
|
import copy
|
|||
|
|
from .mot_online.kalman_filter import KalmanFilter
|
|||
|
|
from .mot_online.basetrack import BaseTrack, TrackState
|
|||
|
|
from .mot_online import matching
|
|||
|
|
|
|||
|
|
|
|||
|
|
class STrack(BaseTrack):
|
|||
|
|
shared_kalman = KalmanFilter()
|
|||
|
|
def __init__(self, tlwh, score):
|
|||
|
|
|
|||
|
|
# wait activate
|
|||
|
|
self._tlwh = np.asarray(tlwh, dtype=np.float)
|
|||
|
|
self.kalman_filter = None
|
|||
|
|
self.mean, self.covariance = None, None
|
|||
|
|
self.is_activated = False
|
|||
|
|
|
|||
|
|
self.score = score
|
|||
|
|
self.tracklet_len = 0
|
|||
|
|
|
|||
|
|
def predict(self):
|
|||
|
|
mean_state = self.mean.copy()
|
|||
|
|
if self.state != TrackState.Tracked:
|
|||
|
|
mean_state[7] = 0
|
|||
|
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
def multi_predict(stracks):
|
|||
|
|
if len(stracks) > 0:
|
|||
|
|
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|||
|
|
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|||
|
|
for i, st in enumerate(stracks):
|
|||
|
|
if st.state != TrackState.Tracked:
|
|||
|
|
multi_mean[i][7] = 0
|
|||
|
|
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
|
|||
|
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|||
|
|
stracks[i].mean = mean
|
|||
|
|
stracks[i].covariance = cov
|
|||
|
|
|
|||
|
|
def activate(self, kalman_filter, frame_id):
|
|||
|
|
"""Start a new tracklet"""
|
|||
|
|
self.kalman_filter = kalman_filter
|
|||
|
|
self.track_id = self.next_id()
|
|||
|
|
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
|
|||
|
|
|
|||
|
|
self.tracklet_len = 0
|
|||
|
|
self.state = TrackState.Tracked
|
|||
|
|
if frame_id == 1:
|
|||
|
|
self.is_activated = True
|
|||
|
|
# self.is_activated = True
|
|||
|
|
self.frame_id = frame_id
|
|||
|
|
self.start_frame = frame_id
|
|||
|
|
|
|||
|
|
def re_activate(self, new_track, frame_id, new_id=False):
|
|||
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|||
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
|
|||
|
|
)
|
|||
|
|
self.tracklet_len = 0
|
|||
|
|
self.state = TrackState.Tracked
|
|||
|
|
self.is_activated = True
|
|||
|
|
self.frame_id = frame_id
|
|||
|
|
if new_id:
|
|||
|
|
self.track_id = self.next_id()
|
|||
|
|
self.score = new_track.score
|
|||
|
|
|
|||
|
|
def update(self, new_track, frame_id):
|
|||
|
|
"""
|
|||
|
|
Update a matched track
|
|||
|
|
:type new_track: STrack
|
|||
|
|
:type frame_id: int
|
|||
|
|
:type update_feature: bool
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
self.frame_id = frame_id
|
|||
|
|
self.tracklet_len += 1
|
|||
|
|
|
|||
|
|
new_tlwh = new_track.tlwh
|
|||
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|||
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
|
|||
|
|
self.state = TrackState.Tracked
|
|||
|
|
self.is_activated = True
|
|||
|
|
|
|||
|
|
self.score = new_track.score
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
# @jit(nopython=True)
|
|||
|
|
def tlwh(self):
|
|||
|
|
"""Get current position in bounding box format `(top left x, top left y,
|
|||
|
|
width, height)`.
|
|||
|
|
"""
|
|||
|
|
if self.mean is None:
|
|||
|
|
return self._tlwh.copy()
|
|||
|
|
ret = self.mean[:4].copy()
|
|||
|
|
ret[2] *= ret[3]
|
|||
|
|
ret[:2] -= ret[2:] / 2
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
# @jit(nopython=True)
|
|||
|
|
def tlbr(self):
|
|||
|
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|||
|
|
`(top left, bottom right)`.
|
|||
|
|
"""
|
|||
|
|
ret = self.tlwh.copy()
|
|||
|
|
ret[2:] += ret[:2]
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
# @jit(nopython=True)
|
|||
|
|
def tlwh_to_xyah(tlwh):
|
|||
|
|
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
|||
|
|
height)`, where the aspect ratio is `width / height`.
|
|||
|
|
"""
|
|||
|
|
ret = np.asarray(tlwh).copy()
|
|||
|
|
ret[:2] += ret[2:] / 2
|
|||
|
|
ret[2] /= ret[3]
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
def to_xyah(self):
|
|||
|
|
return self.tlwh_to_xyah(self.tlwh)
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
# @jit(nopython=True)
|
|||
|
|
def tlbr_to_tlwh(tlbr):
|
|||
|
|
ret = np.asarray(tlbr).copy()
|
|||
|
|
ret[2:] -= ret[:2]
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
@staticmethod
|
|||
|
|
# @jit(nopython=True)
|
|||
|
|
def tlwh_to_tlbr(tlwh):
|
|||
|
|
ret = np.asarray(tlwh).copy()
|
|||
|
|
ret[2:] += ret[:2]
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
def __repr__(self):
|
|||
|
|
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
class BYTETracker(object):
|
|||
|
|
def __init__(self, args, frame_rate=30):
|
|||
|
|
self.args = args
|
|||
|
|
self.det_thresh = args.new_thresh
|
|||
|
|
self.buffer_size = int(frame_rate / 30.0 * args.track_buffer)
|
|||
|
|
self.max_time_lost = self.buffer_size
|
|||
|
|
self.reset()
|
|||
|
|
|
|||
|
|
# below has no effect to final output, just to be compatible to codebase
|
|||
|
|
def init_track(self, results):
|
|||
|
|
for item in results:
|
|||
|
|
if item['score'] > self.opt.new_thresh and item['class'] == 1:
|
|||
|
|
self.id_count += 1
|
|||
|
|
item['active'] = 1
|
|||
|
|
item['age'] = 1
|
|||
|
|
item['tracking_id'] = self.id_count
|
|||
|
|
if not ('ct' in item):
|
|||
|
|
bbox = item['bbox']
|
|||
|
|
item['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
|
|||
|
|
self.tracks.append(item)
|
|||
|
|
|
|||
|
|
def reset(self):
|
|||
|
|
self.frame_id = 0
|
|||
|
|
self.kalman_filter = KalmanFilter()
|
|||
|
|
self.tracked_stracks = [] # type: list[STrack]
|
|||
|
|
self.lost_stracks = [] # type: list[STrack]
|
|||
|
|
self.removed_stracks = [] # type: list[STrack]
|
|||
|
|
self.tracks = []
|
|||
|
|
|
|||
|
|
# below has no effect to final output, just to be compatible to codebase
|
|||
|
|
self.id_count = 0
|
|||
|
|
|
|||
|
|
def step(self, results, public_det=None):
|
|||
|
|
self.frame_id += 1
|
|||
|
|
activated_starcks = []
|
|||
|
|
refind_stracks = []
|
|||
|
|
lost_stracks = []
|
|||
|
|
removed_stracks = []
|
|||
|
|
detections = []
|
|||
|
|
detections_second = []
|
|||
|
|
|
|||
|
|
scores = np.array([item['score'] for item in results if item['class'] == 1], np.float32)
|
|||
|
|
bboxes = np.vstack([item['bbox'] for item in results if item['class'] == 1]) # N x 4, x1y1x2y2
|
|||
|
|
|
|||
|
|
remain_inds = scores >= self.args.track_thresh
|
|||
|
|
dets = bboxes[remain_inds]
|
|||
|
|
scores_keep = scores[remain_inds]
|
|||
|
|
|
|||
|
|
|
|||
|
|
inds_low = scores > self.args.out_thresh
|
|||
|
|
inds_high = scores < self.args.track_thresh
|
|||
|
|
inds_second = np.logical_and(inds_low, inds_high)
|
|||
|
|
dets_second = bboxes[inds_second]
|
|||
|
|
scores_second = scores[inds_second]
|
|||
|
|
|
|||
|
|
if len(dets) > 0:
|
|||
|
|
'''Detections'''
|
|||
|
|
detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
|
|||
|
|
(tlbr, s) in zip(dets, scores_keep)]
|
|||
|
|
else:
|
|||
|
|
detections = []
|
|||
|
|
|
|||
|
|
''' Add newly detected tracklets to tracked_stracks'''
|
|||
|
|
unconfirmed = []
|
|||
|
|
tracked_stracks = [] # type: list[STrack]
|
|||
|
|
for track in self.tracked_stracks:
|
|||
|
|
if not track.is_activated:
|
|||
|
|
unconfirmed.append(track)
|
|||
|
|
else:
|
|||
|
|
tracked_stracks.append(track)
|
|||
|
|
|
|||
|
|
''' Step 2: First association, with Kalman and IOU'''
|
|||
|
|
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
|
|||
|
|
# Predict the current location with KF
|
|||
|
|
STrack.multi_predict(strack_pool)
|
|||
|
|
dists = matching.iou_distance(strack_pool, detections)
|
|||
|
|
#dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
|
|||
|
|
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
|
|||
|
|
|
|||
|
|
for itracked, idet in matches:
|
|||
|
|
track = strack_pool[itracked]
|
|||
|
|
det = detections[idet]
|
|||
|
|
if track.state == TrackState.Tracked:
|
|||
|
|
track.update(detections[idet], self.frame_id)
|
|||
|
|
activated_starcks.append(track)
|
|||
|
|
else:
|
|||
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|||
|
|
refind_stracks.append(track)
|
|||
|
|
|
|||
|
|
''' Step 3: Second association, association the untrack to the low score detections, with IOU'''
|
|||
|
|
if len(dets_second) > 0:
|
|||
|
|
'''Detections'''
|
|||
|
|
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
|
|||
|
|
(tlbr, s) in zip(dets_second, scores_second)]
|
|||
|
|
else:
|
|||
|
|
detections_second = []
|
|||
|
|
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
|
|||
|
|
dists = matching.iou_distance(r_tracked_stracks, detections_second)
|
|||
|
|
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
|
|||
|
|
for itracked, idet in matches:
|
|||
|
|
track = r_tracked_stracks[itracked]
|
|||
|
|
det = detections_second[idet]
|
|||
|
|
if track.state == TrackState.Tracked:
|
|||
|
|
track.update(det, self.frame_id)
|
|||
|
|
activated_starcks.append(track)
|
|||
|
|
else:
|
|||
|
|
track.re_activate(det, self.frame_id, new_id=False)
|
|||
|
|
refind_stracks.append(track)
|
|||
|
|
|
|||
|
|
for it in u_track:
|
|||
|
|
track = r_tracked_stracks[it]
|
|||
|
|
if not track.state == TrackState.Lost:
|
|||
|
|
track.mark_lost()
|
|||
|
|
lost_stracks.append(track)
|
|||
|
|
|
|||
|
|
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
|
|||
|
|
detections = [detections[i] for i in u_detection]
|
|||
|
|
dists = matching.iou_distance(unconfirmed, detections)
|
|||
|
|
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
|
|||
|
|
for itracked, idet in matches:
|
|||
|
|
unconfirmed[itracked].update(detections[idet], self.frame_id)
|
|||
|
|
activated_starcks.append(unconfirmed[itracked])
|
|||
|
|
for it in u_unconfirmed:
|
|||
|
|
track = unconfirmed[it]
|
|||
|
|
track.mark_removed()
|
|||
|
|
removed_stracks.append(track)
|
|||
|
|
|
|||
|
|
""" Step 4: Init new stracks"""
|
|||
|
|
for inew in u_detection:
|
|||
|
|
track = detections[inew]
|
|||
|
|
if track.score < self.det_thresh:
|
|||
|
|
continue
|
|||
|
|
track.activate(self.kalman_filter, self.frame_id)
|
|||
|
|
activated_starcks.append(track)
|
|||
|
|
""" Step 5: Update state"""
|
|||
|
|
for track in self.lost_stracks:
|
|||
|
|
if self.frame_id - track.end_frame > self.max_time_lost:
|
|||
|
|
track.mark_removed()
|
|||
|
|
removed_stracks.append(track)
|
|||
|
|
|
|||
|
|
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
|
|||
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
|
|||
|
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
|
|||
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
|
|||
|
|
self.lost_stracks.extend(lost_stracks)
|
|||
|
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
|
|||
|
|
self.removed_stracks.extend(removed_stracks)
|
|||
|
|
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
|
|||
|
|
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
|
|||
|
|
|
|||
|
|
ret = []
|
|||
|
|
for track in output_stracks:
|
|||
|
|
track_dict = {}
|
|||
|
|
track_dict['score'] = track.score
|
|||
|
|
track_dict['bbox'] = track.tlbr
|
|||
|
|
bbox = track_dict['bbox']
|
|||
|
|
track_dict['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
|
|||
|
|
track_dict['active'] = 1 if track.is_activated else 0
|
|||
|
|
track_dict['tracking_id'] = track.track_id
|
|||
|
|
track_dict['class'] = 1
|
|||
|
|
ret.append(track_dict)
|
|||
|
|
|
|||
|
|
self.tracks = ret
|
|||
|
|
return ret
|
|||
|
|
|
|||
|
|
|
|||
|
|
def joint_stracks(tlista, tlistb):
|
|||
|
|
exists = {}
|
|||
|
|
res = []
|
|||
|
|
for t in tlista:
|
|||
|
|
exists[t.track_id] = 1
|
|||
|
|
res.append(t)
|
|||
|
|
for t in tlistb:
|
|||
|
|
tid = t.track_id
|
|||
|
|
if not exists.get(tid, 0):
|
|||
|
|
exists[tid] = 1
|
|||
|
|
res.append(t)
|
|||
|
|
return res
|
|||
|
|
|
|||
|
|
|
|||
|
|
def sub_stracks(tlista, tlistb):
|
|||
|
|
stracks = {}
|
|||
|
|
for t in tlista:
|
|||
|
|
stracks[t.track_id] = t
|
|||
|
|
for t in tlistb:
|
|||
|
|
tid = t.track_id
|
|||
|
|
if stracks.get(tid, 0):
|
|||
|
|
del stracks[tid]
|
|||
|
|
return list(stracks.values())
|
|||
|
|
|
|||
|
|
|
|||
|
|
def remove_duplicate_stracks(stracksa, stracksb):
|
|||
|
|
pdist = matching.iou_distance(stracksa, stracksb)
|
|||
|
|
pairs = np.where(pdist < 0.15)
|
|||
|
|
dupa, dupb = list(), list()
|
|||
|
|
for p, q in zip(*pairs):
|
|||
|
|
timep = stracksa[p].frame_id - stracksa[p].start_frame
|
|||
|
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame
|
|||
|
|
if timep > timeq:
|
|||
|
|
dupb.append(q)
|
|||
|
|
else:
|
|||
|
|
dupa.append(p)
|
|||
|
|
resa = [t for i, t in enumerate(stracksa) if not i in dupa]
|
|||
|
|
resb = [t for i, t in enumerate(stracksb) if not i in dupb]
|
|||
|
|
return resa, resb
|
|||
|
|
|
|||
|
|
|
|||
|
|
def remove_fp_stracks(stracksa, n_frame=10):
|
|||
|
|
remain = []
|
|||
|
|
for t in stracksa:
|
|||
|
|
score_5 = t.score_list[-n_frame:]
|
|||
|
|
score_5 = np.array(score_5, dtype=np.float32)
|
|||
|
|
index = score_5 < 0.45
|
|||
|
|
num = np.sum(index)
|
|||
|
|
if num < n_frame:
|
|||
|
|
remain.append(t)
|
|||
|
|
return remain
|
|||
|
|
|