更新入侵检测的功能(存在15s延迟需优化)
This commit is contained in:
parent
3d07422520
commit
07e692970f
|
|
@ -1,9 +1,9 @@
|
|||
#include <stdio.h>
|
||||
#include <mutex>
|
||||
#include <chrono> // 用于计时
|
||||
#include <string> // 使用 std::string
|
||||
#include <vector> // 使用 std::vector
|
||||
#include <algorithm> // 使用 std::min/max
|
||||
// #include <mutex> // 已移除
|
||||
// #include <chrono> // 已移除
|
||||
#include <string>
|
||||
#include <vector>
|
||||
// #include <algorithm> // 已移除
|
||||
|
||||
#include "postprocess.h"
|
||||
#include "preprocess.h"
|
||||
|
|
@ -15,19 +15,7 @@
|
|||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "rknn/rknn_api.h"
|
||||
|
||||
// 报警接口函数 (目前只打印信息)
|
||||
void trigger_alarm(int person_id, const cv::Rect& box) {
|
||||
printf("[ALARM] Intrusion detected! Person ID: %d at location (%d, %d, %d, %d)\n",
|
||||
person_id, box.x, box.y, box.width, box.height);
|
||||
// TODO: 在这里实现真正的报警逻辑,例如发送网络消息、写入数据库等。
|
||||
}
|
||||
|
||||
// 获取当前时间的函数 (返回秒)
|
||||
double get_current_time_seconds() {
|
||||
return std::chrono::duration_cast<std::chrono::duration<double>>(
|
||||
std::chrono::high_resolution_clock::now().time_since_epoch()
|
||||
).count();
|
||||
}
|
||||
// trigger_alarm 和 get_current_time_seconds 已被移至 video_service.cc
|
||||
|
||||
static void dump_tensor_attr(rknn_tensor_attr *attr)
|
||||
{
|
||||
|
|
@ -108,17 +96,10 @@ rkYolov5s::rkYolov5s(const std::string &model_path)
|
|||
nms_threshold = NMS_THRESH;
|
||||
box_conf_threshold = BOX_THRESH;
|
||||
|
||||
// 初始化跟踪器和入侵检测参数
|
||||
next_track_id = 1;
|
||||
intrusion_time_threshold = 3.0; // 报警时间阈值:3秒
|
||||
// 默认设置一个无效的入侵区域,将在第一帧时根据图像大小初始化
|
||||
intrusion_zone = cv::Rect(0, 0, 0, 0);
|
||||
// 跟踪器相关的初始化已全部移除
|
||||
}
|
||||
|
||||
void rkYolov5s::set_intrusion_zone(const cv::Rect& zone) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
this->intrusion_zone = zone;
|
||||
}
|
||||
// set_intrusion_zone 已被移除
|
||||
|
||||
int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
|
||||
{
|
||||
|
|
@ -224,97 +205,18 @@ rknn_context *rkYolov5s::get_pctx()
|
|||
return &ctx;
|
||||
}
|
||||
|
||||
void rkYolov5s::update_tracker(detect_result_group_t &detect_result_group)
|
||||
// update_tracker 函数已完全移除 (移至 video_service.cc)
|
||||
|
||||
|
||||
// 关键修改:
|
||||
// 1. 函数签名改变
|
||||
// 2. 移除了 lock_guard
|
||||
// 3. 输入参数变为 const cv::Mat&
|
||||
// 4. 移除了所有 update_tracker 和 绘图(cv::rectangle/putText) 逻辑
|
||||
// 5. 返回值变为 detect_result_group_t
|
||||
detect_result_group_t rkYolov5s::infer(const cv::Mat &orig_img)
|
||||
{
|
||||
std::vector<cv::Rect> current_detections;
|
||||
for (int i = 0; i < detect_result_group.count; i++) {
|
||||
detect_result_t *det_result = &(detect_result_group.results[i]);
|
||||
if (strcmp(det_result->name, "person") == 0) {
|
||||
current_detections.push_back(cv::Rect(
|
||||
det_result->box.left, det_result->box.top,
|
||||
det_result->box.right - det_result->box.left,
|
||||
det_result->box.bottom - det_result->box.top));
|
||||
}
|
||||
}
|
||||
|
||||
// 1. 对于已有的跟踪目标,增加其未见帧数
|
||||
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
|
||||
it->second.frames_unseen++;
|
||||
}
|
||||
|
||||
// 2. 将当前帧的检测结果与已有的跟踪目标进行匹配
|
||||
for (const auto& det_box : current_detections) {
|
||||
bool is_matched = false;
|
||||
int best_match_id = -1;
|
||||
double max_iou = 0.3; // IoU阈值,用于判断是否为同一目标
|
||||
|
||||
for (auto const& [id, person] : tracked_persons) {
|
||||
// 计算交并比 (Intersection over Union)
|
||||
double iou = (double)(det_box & person.box).area() / (double)(det_box | person.box).area();
|
||||
if (iou > max_iou) {
|
||||
max_iou = iou;
|
||||
best_match_id = id;
|
||||
}
|
||||
}
|
||||
|
||||
if (best_match_id != -1) {
|
||||
// 匹配成功,更新目标信息
|
||||
tracked_persons[best_match_id].box = det_box;
|
||||
tracked_persons[best_match_id].frames_unseen = 0;
|
||||
is_matched = true;
|
||||
} else {
|
||||
// 匹配失败,创建新的跟踪目标
|
||||
TrackedPerson new_person;
|
||||
new_person.id = next_track_id++;
|
||||
new_person.box = det_box;
|
||||
new_person.entry_time = 0;
|
||||
new_person.is_in_zone = false;
|
||||
new_person.alarm_triggered = false;
|
||||
new_person.frames_unseen = 0;
|
||||
tracked_persons[new_person.id] = new_person;
|
||||
}
|
||||
}
|
||||
|
||||
// 3. 处理和更新每个目标的状态
|
||||
double current_time = get_current_time_seconds();
|
||||
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
|
||||
TrackedPerson& person = it->second;
|
||||
// 判断人员包围盒是否与入侵区域有交集
|
||||
bool currently_in_zone = (intrusion_zone & person.box).area() > 0;
|
||||
|
||||
if (currently_in_zone) {
|
||||
if (!person.is_in_zone) {
|
||||
// 刚进入区域
|
||||
person.is_in_zone = true;
|
||||
person.entry_time = current_time;
|
||||
} else {
|
||||
// 已在区域内,检查是否超时
|
||||
if (!person.alarm_triggered && (current_time - person.entry_time) > intrusion_time_threshold) {
|
||||
person.alarm_triggered = true;
|
||||
trigger_alarm(person.id, person.box);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// 不在区域内,重置状态
|
||||
person.is_in_zone = false;
|
||||
person.entry_time = 0;
|
||||
person.alarm_triggered = false;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 移除消失太久的目标
|
||||
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ) {
|
||||
if (it->second.frames_unseen > 20) { // 超过20帧未见则移除
|
||||
it = tracked_persons.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// std::lock_guard<std::mutex> lock(mtx); // 已移除
|
||||
cv::Mat img;
|
||||
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
|
||||
img_width = img.cols;
|
||||
|
|
@ -369,33 +271,12 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
|
|||
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
|
||||
box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
|
||||
|
||||
// 更新跟踪器状态
|
||||
// 首次运行时,根据图像尺寸初始化入侵区域 (设定在画面中央)
|
||||
if (intrusion_zone.width == 0 || intrusion_zone.height == 0) {
|
||||
intrusion_zone = cv::Rect(orig_img.cols / 4, orig_img.rows / 4, orig_img.cols / 2, orig_img.rows / 2);
|
||||
}
|
||||
update_tracker(detect_result_group);
|
||||
// 所有 跟踪器(update_tracker) 和 绘图(cv::rectangle/putText) 逻辑均已移除
|
||||
|
||||
// 绘制入侵区域
|
||||
cv::rectangle(orig_img, intrusion_zone, cv::Scalar(255, 255, 0), 2); // 黄色
|
||||
|
||||
// 绘制框体和报警状态
|
||||
for (auto const& [id, person] : tracked_persons) {
|
||||
// 根据是否触发报警决定颜色 (BGR: 红色 vs 绿色)
|
||||
cv::Scalar box_color = person.alarm_triggered ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0);
|
||||
int line_thickness = person.alarm_triggered ? 3 : 2;
|
||||
|
||||
cv::rectangle(orig_img, person.box, box_color, line_thickness);
|
||||
std::string label = "Person " + std::to_string(id);
|
||||
if (person.is_in_zone) {
|
||||
label += " (In Zone)";
|
||||
}
|
||||
cv::putText(orig_img, label, cv::Point(person.box.x, person.box.y - 10),
|
||||
cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
|
||||
}
|
||||
|
||||
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
|
||||
return orig_img;
|
||||
|
||||
// 返回原始检测结果
|
||||
return detect_result_group;
|
||||
}
|
||||
|
||||
rkYolov5s::~rkYolov5s()
|
||||
|
|
|
|||
|
|
@ -3,11 +3,9 @@
|
|||
|
||||
#include "rknn_api.h"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include <map> // 用于存储跟踪目标
|
||||
#include <mutex> // 确保线程安全
|
||||
#include <string> // 使用 std::string
|
||||
#include <vector> // 使用 std::vector
|
||||
#include "postprocess.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "postprocess.h" // 包含 detect_result_group_t 的定义
|
||||
|
||||
// 前置声明
|
||||
static void dump_tensor_attr(rknn_tensor_attr *attr);
|
||||
|
|
@ -15,22 +13,13 @@ static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz);
|
|||
static unsigned char *load_model(const char *filename, int *model_size);
|
||||
static int saveFloat(const char *file_name, float *output, int element_size);
|
||||
|
||||
// 用于跟踪单个目标的结构体
|
||||
struct TrackedPerson
|
||||
{
|
||||
int id; // 唯一ID
|
||||
cv::Rect box; // 当前位置
|
||||
double entry_time; // 进入入侵区域的时间戳 (秒)
|
||||
bool is_in_zone; // 是否在区域内
|
||||
bool alarm_triggered; // 是否已触发报警
|
||||
int frames_unseen; // 消失的帧数
|
||||
};
|
||||
// 注意:TrackedPerson 结构体已被移至 video_service.h
|
||||
|
||||
class rkYolov5s
|
||||
{
|
||||
private:
|
||||
int ret;
|
||||
std::mutex mtx;
|
||||
// std::mutex mtx; // 已移除,推理应是无状态的
|
||||
std::string model_path;
|
||||
unsigned char *model_data;
|
||||
|
||||
|
|
@ -45,24 +34,18 @@ private:
|
|||
|
||||
float nms_threshold, box_conf_threshold;
|
||||
|
||||
// 入侵检测和跟踪相关成员
|
||||
cv::Rect intrusion_zone; // 入侵区域
|
||||
std::map<int, TrackedPerson> tracked_persons; // 存储所有被跟踪的人
|
||||
int next_track_id; // 用于分配新的唯一ID
|
||||
double intrusion_time_threshold; // 入侵时间阈值 (秒)
|
||||
|
||||
// 跟踪逻辑的私有方法
|
||||
void update_tracker(detect_result_group_t &detect_result_group);
|
||||
// 所有的跟踪和入侵检测成员变量已被移除
|
||||
|
||||
public:
|
||||
rkYolov5s(const std::string &model_path);
|
||||
int init(rknn_context *ctx_in, bool isChild);
|
||||
rknn_context *get_pctx();
|
||||
cv::Mat infer(cv::Mat &ori_img);
|
||||
|
||||
|
||||
detect_result_group_t infer(const cv::Mat &ori_img);
|
||||
|
||||
~rkYolov5s();
|
||||
|
||||
// 用于从外部设置入侵区域的公共方法
|
||||
void set_intrusion_zone(const cv::Rect& zone);
|
||||
};
|
||||
|
||||
#endif // RKYOLOV5S_H
|
||||
|
|
@ -5,6 +5,22 @@
|
|||
#include "rknn/rkYolov5s.hpp"
|
||||
#include "rknn/rknnPool.hpp"
|
||||
#include "spdlog/spdlog.h"
|
||||
#include <chrono> // (新增) 用于计时
|
||||
#include <algorithm> // (新增)
|
||||
|
||||
// (新增) 报警接口函数 (从 rkYolov5s.cc 移入)
|
||||
void VideoService::trigger_alarm(int person_id, const cv::Rect& box) {
|
||||
printf("[ALARM] Intrusion detected! Person ID: %d at location (%d, %d, %d, %d)\n",
|
||||
person_id, box.x, box.y, box.width, box.height);
|
||||
// TODO: 在这里实现真正的报警逻辑,例如发送网络消息、写入数据库等。
|
||||
}
|
||||
|
||||
// (新增) 获取当前时间的函数 (从 rkYolov5s.cc 移入)
|
||||
double VideoService::get_current_time_seconds() {
|
||||
return std::chrono::duration_cast<std::chrono::duration<double>>(
|
||||
std::chrono::high_resolution_clock::now().time_since_epoch()
|
||||
).count();
|
||||
}
|
||||
|
||||
VideoService::VideoService(std::string model_path,
|
||||
int thread_num,
|
||||
|
|
@ -16,6 +32,11 @@ VideoService::VideoService(std::string model_path,
|
|||
output_rtsp_url_(output_rtsp_url),
|
||||
running_(false)
|
||||
{
|
||||
// (新增) 初始化跟踪器状态
|
||||
next_track_id_ = 1;
|
||||
intrusion_time_threshold_ = 3.0; // 3秒
|
||||
intrusion_zone_ = cv::Rect(0, 0, 0, 0); // 默认无效
|
||||
|
||||
printf("VideoService created. Input: %s, Output: %s\n", input_url_.c_str(), output_rtsp_url_.c_str());
|
||||
}
|
||||
|
||||
|
|
@ -27,30 +48,29 @@ VideoService::~VideoService() {
|
|||
|
||||
|
||||
bool VideoService::start() {
|
||||
// 1. 初始化 rknnPool (来自旧的 main)
|
||||
rknn_pool_ = std::make_unique<rknnPool<rkYolov5s, cv::Mat, cv::Mat>>(model_path_.c_str(), thread_num_);
|
||||
// (关键修改) rknnPool 的模板参数已更新
|
||||
rknn_pool_ = std::make_unique<rknnPool<rkYolov5s, cv::Mat, detect_result_group_t>>(model_path_.c_str(), thread_num_);
|
||||
if (rknn_pool_->init() != 0) {
|
||||
printf("rknnPool init fail!\n");
|
||||
return false;
|
||||
}
|
||||
printf("rknnPool init success.\n");
|
||||
|
||||
// 2. 设置RTSP传输协议 (来自旧的 main)
|
||||
// 2. 设置RTSP传输协议
|
||||
setenv("OPENCV_FFMPEG_CAPTURE_OPTIONS", "rtsp_transport;tcp", 1);
|
||||
printf("Set RTSP transport protocol to TCP\n");
|
||||
|
||||
// 3. 初始化 VideoCapture (使用成员变量)
|
||||
// 3. 初始化 VideoCapture
|
||||
capture_.open(input_url_, cv::CAP_FFMPEG);
|
||||
if (!capture_.isOpened()) {
|
||||
printf("Error: Could not open RTSP stream: %s\n", input_url_.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// 4. (关键) 获取输入视频的属性
|
||||
// 4. 获取输入视频的属性
|
||||
frame_width_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_WIDTH));
|
||||
frame_height_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_HEIGHT));
|
||||
frame_fps_ = capture_.get(cv::CAP_PROP_FPS);
|
||||
// 很多RTSP流不提供FPS,给一个默认值
|
||||
if (frame_fps_ <= 0) frame_fps_ = 25.0;
|
||||
|
||||
printf("RTSP stream opened successfully! (%dx%d @ %.2f FPS)\n", frame_width_, frame_height_, frame_fps_);
|
||||
|
|
@ -61,18 +81,18 @@ bool VideoService::start() {
|
|||
"video/x-raw,format=BGR ! "
|
||||
"videoconvert ! "
|
||||
"video/x-raw,format=NV12 ! "
|
||||
"mpph265enc gop=25 rc-mode=fixqp qp-init=26 ! "
|
||||
"mpph265enc gop=25 rc-mode=fixqp qp-init=26 ! " // (备注) 你可以根据需要调整 mpph265enc 参数
|
||||
"h265parse ! "
|
||||
"rtspclientsink location=" + output_rtsp_url_ + " latency=0 protocols=tcp";
|
||||
|
||||
printf("Using GStreamer output pipeline: %s\n", gst_pipeline.c_str());
|
||||
|
||||
writer_.open(gst_pipeline,
|
||||
cv::CAP_GSTREAMER, // 使用 GStreamer 后端
|
||||
0, // fourcc, GStreamer不需要
|
||||
frame_fps_, // FPS
|
||||
cv::Size(frame_width_, frame_height_), // 帧大小
|
||||
true); // 是彩色图像
|
||||
cv::CAP_GSTREAMER,
|
||||
0,
|
||||
frame_fps_,
|
||||
cv::Size(frame_width_, frame_height_),
|
||||
true);
|
||||
|
||||
if (!writer_.isOpened()) {
|
||||
printf("Error: Could not open VideoWriter with GStreamer pipeline.\n");
|
||||
|
|
@ -99,7 +119,6 @@ void VideoService::stop() {
|
|||
}
|
||||
printf("Processing thread joined.\n");
|
||||
|
||||
// 释放资源
|
||||
if (capture_.isOpened()) {
|
||||
capture_.release();
|
||||
}
|
||||
|
|
@ -111,11 +130,127 @@ void VideoService::stop() {
|
|||
}
|
||||
|
||||
|
||||
// (新增) 从 rkYolov5s.cc 移入并修改
|
||||
// 这是现在唯一的跟踪器逻辑,在主线程中串行调用
|
||||
void VideoService::update_tracker(detect_result_group_t &detect_result_group, const cv::Size& frame_size)
|
||||
{
|
||||
// 首次运行时,根据图像尺寸初始化入侵区域 (设定在画面中央)
|
||||
if (intrusion_zone_.width == 0 || intrusion_zone_.height == 0) {
|
||||
intrusion_zone_ = cv::Rect(frame_size.width / 4, frame_size.height / 4, frame_size.width / 2, frame_size.height / 2);
|
||||
}
|
||||
|
||||
std::vector<cv::Rect> current_detections;
|
||||
for (int i = 0; i < detect_result_group.count; i++) {
|
||||
detect_result_t *det_result = &(detect_result_group.results[i]);
|
||||
if (strcmp(det_result->name, "person") == 0) {
|
||||
current_detections.push_back(cv::Rect(
|
||||
det_result->box.left, det_result->box.top,
|
||||
det_result->box.right - det_result->box.left,
|
||||
det_result->box.bottom - det_result->box.top));
|
||||
}
|
||||
}
|
||||
|
||||
// 1. 对于已有的跟踪目标,增加其未见帧数
|
||||
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ++it) {
|
||||
it->second.frames_unseen++;
|
||||
}
|
||||
|
||||
// 2. 将当前帧的检测结果与已有的跟踪目标进行匹配
|
||||
for (const auto& det_box : current_detections) {
|
||||
bool is_matched = false;
|
||||
int best_match_id = -1;
|
||||
double max_iou = 0.3; // IoU阈值
|
||||
|
||||
for (auto const& [id, person] : this->tracked_persons_) {
|
||||
double iou = (double)(det_box & person.box).area() / (double)(det_box | person.box).area();
|
||||
if (iou > max_iou) {
|
||||
max_iou = iou;
|
||||
best_match_id = id;
|
||||
}
|
||||
}
|
||||
|
||||
if (best_match_id != -1) {
|
||||
// 匹配成功
|
||||
tracked_persons_[best_match_id].box = det_box;
|
||||
tracked_persons_[best_match_id].frames_unseen = 0;
|
||||
is_matched = true;
|
||||
} else {
|
||||
// 匹配失败,创建新的跟踪目标
|
||||
TrackedPerson new_person;
|
||||
new_person.id = this->next_track_id_++; // 使用成员变量
|
||||
new_person.box = det_box;
|
||||
new_person.entry_time = 0;
|
||||
new_person.is_in_zone = false;
|
||||
new_person.alarm_triggered = false;
|
||||
new_person.frames_unseen = 0;
|
||||
tracked_persons_[new_person.id] = new_person; // 使用成员变量
|
||||
}
|
||||
}
|
||||
|
||||
// 3. 处理和更新每个目标的状态
|
||||
double current_time = get_current_time_seconds();
|
||||
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ++it) {
|
||||
TrackedPerson& person = it->second;
|
||||
// 使用成员变量
|
||||
bool currently_in_zone = (this->intrusion_zone_ & person.box).area() > 0;
|
||||
|
||||
if (currently_in_zone) {
|
||||
if (!person.is_in_zone) {
|
||||
person.is_in_zone = true;
|
||||
person.entry_time = current_time;
|
||||
} else {
|
||||
// 使用成员变量
|
||||
if (!person.alarm_triggered && (current_time - person.entry_time) > this->intrusion_time_threshold_) {
|
||||
person.alarm_triggered = true;
|
||||
trigger_alarm(person.id, person.box); // 调用成员函数
|
||||
}
|
||||
}
|
||||
} else {
|
||||
person.is_in_zone = false;
|
||||
person.entry_time = 0;
|
||||
person.alarm_triggered = false;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 移除消失太久的目标
|
||||
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ) {
|
||||
// (建议) 增加到50帧 (约2秒) 提高鲁棒性,减少ID切换
|
||||
if (it->second.frames_unseen > 50) {
|
||||
it = tracked_persons_.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// (新增) 绘图辅助函数,从 rkYolov5s::infer 移入
|
||||
void VideoService::draw_results(cv::Mat& frame)
|
||||
{
|
||||
// 绘制入侵区域
|
||||
cv::rectangle(frame, this->intrusion_zone_, cv::Scalar(255, 255, 0), 2); // 黄色
|
||||
|
||||
// 绘制框体和报警状态
|
||||
for (auto const& [id, person] : this->tracked_persons_) {
|
||||
// 根据是否触发报警决定颜色 (BGR: 红色 vs 绿色)
|
||||
cv::Scalar box_color = person.alarm_triggered ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0);
|
||||
int line_thickness = person.alarm_triggered ? 3 : 2;
|
||||
|
||||
cv::rectangle(frame, person.box, box_color, line_thickness);
|
||||
std::string label = "Person " + std::to_string(id);
|
||||
if (person.is_in_zone) {
|
||||
label += " (In Zone)";
|
||||
}
|
||||
cv::putText(frame, label, cv::Point(person.box.x, person.box.y - 10),
|
||||
cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// (关键修改) 彻底重写处理循环为 "一进一出" 模式
|
||||
void VideoService::processing_loop() {
|
||||
cv::Mat frame;
|
||||
cv::Mat processed_frame;
|
||||
int frames_in_pipeline = 0;
|
||||
|
||||
detect_result_group_t detection_results; // (修改) 存储推理结果
|
||||
|
||||
while (running_) {
|
||||
if (!capture_.read(frame)) {
|
||||
spdlog::warn("VideoService: Failed to read frame from capture. Stopping capture.");
|
||||
|
|
@ -127,42 +262,34 @@ void VideoService::processing_loop() {
|
|||
continue;
|
||||
}
|
||||
|
||||
// 1. (并行) 将原始帧放入池中进行推理
|
||||
if (rknn_pool_->put(frame) != 0) {
|
||||
spdlog::error("VideoService: Failed to put frame into rknnPool. Stopping.");
|
||||
running_ = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (frames_in_pipeline >= thread_num_) {
|
||||
|
||||
if (rknn_pool_->get(processed_frame) != 0) {
|
||||
spdlog::error("VideoService: Failed to get frame from rknnPool. Stopping.");
|
||||
running_ = false;
|
||||
break;
|
||||
}
|
||||
// 2. (串行) 立刻取回该帧的推理结果
|
||||
// 这保证了 跟踪 和 绘图 总是按顺序在主线程中执行
|
||||
if (rknn_pool_->get(detection_results) != 0) {
|
||||
spdlog::error("VideoService: Failed to get frame from rknnPool. Stopping.");
|
||||
running_ = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// (核心) 推流
|
||||
if (writer_.isOpened()) {
|
||||
writer_.write(processed_frame);
|
||||
}
|
||||
} else {
|
||||
frames_in_pipeline++;
|
||||
// 3. (串行) 在主循环中更新唯一的跟踪器
|
||||
this->update_tracker(detection_results, frame.size());
|
||||
|
||||
// 4. (串行) 在主循环中将跟踪结果绘制到帧上
|
||||
this->draw_results(frame);
|
||||
|
||||
// 5. (串行) 将处理和绘制完毕的帧推流
|
||||
if (writer_.isOpened()) {
|
||||
writer_.write(frame);
|
||||
}
|
||||
}
|
||||
|
||||
spdlog::info("VideoService: Processing loop finished. Draining remaining frames...");
|
||||
|
||||
while (true) {
|
||||
if (rknn_pool_->get(processed_frame) != 0) {
|
||||
// 队列已空,排空完成
|
||||
break;
|
||||
}
|
||||
|
||||
// 成功获取一帧,将其推流
|
||||
if (writer_.isOpened()) {
|
||||
writer_.write(processed_frame);
|
||||
}
|
||||
}
|
||||
|
||||
spdlog::info("VideoService: Draining complete.");
|
||||
// (修改) 移除排空循环 (Draining loop)
|
||||
// 新的 "一进一出" 逻辑不需要排空,退出即停止
|
||||
spdlog::info("VideoService: Processing loop finished.");
|
||||
}
|
||||
|
|
@ -5,22 +5,35 @@
|
|||
#include <thread>
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
#include <map> // (新增) 用于跟踪
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include "postprocess.h" // (新增) 需要 detect_result_group_t
|
||||
|
||||
// 向前声明
|
||||
template<typename T, typename IN, typename OUT>
|
||||
class rknnPool;
|
||||
class rkYolov5s;
|
||||
|
||||
// (新增) 从 rkYolov5s.hpp 移动过来的结构体
|
||||
struct TrackedPerson
|
||||
{
|
||||
int id; // 唯一ID
|
||||
cv::Rect box; // 当前位置
|
||||
double entry_time; // 进入入侵区域的时间戳 (秒)
|
||||
bool is_in_zone; // 是否在区域内
|
||||
bool alarm_triggered; // 是否已触发报警
|
||||
int frames_unseen; // 消失的帧数
|
||||
};
|
||||
|
||||
class VideoService {
|
||||
public:
|
||||
VideoService(std::string model_path,
|
||||
int thread_num,
|
||||
std::string input_url, // <--- 新增
|
||||
std::string output_rtsp_url); // <--- 名称修改,更明确
|
||||
std::string input_url,
|
||||
std::string output_rtsp_url);
|
||||
|
||||
~VideoService(); // <-- 析构函数将用于调用 stop()
|
||||
~VideoService();
|
||||
|
||||
bool start();
|
||||
void stop();
|
||||
|
|
@ -28,23 +41,36 @@ public:
|
|||
private:
|
||||
void processing_loop();
|
||||
|
||||
// (新增) 跟踪和绘图相关的私有方法
|
||||
void update_tracker(detect_result_group_t &detect_result_group, const cv::Size& frame_size);
|
||||
void draw_results(cv::Mat& frame); // 绘图辅助函数
|
||||
void trigger_alarm(int person_id, const cv::Rect& box);
|
||||
double get_current_time_seconds();
|
||||
|
||||
// 配置
|
||||
std::string model_path_;
|
||||
int thread_num_;
|
||||
std::string input_url_; // <--- 新增
|
||||
std::string output_rtsp_url_; // <--- 新增
|
||||
std::string input_url_;
|
||||
std::string output_rtsp_url_;
|
||||
|
||||
// 视频属性 (重要)
|
||||
// 视频属性
|
||||
int frame_width_ = 0;
|
||||
int frame_height_ = 0;
|
||||
double frame_fps_ = 0.0;
|
||||
|
||||
// 资源
|
||||
std::unique_ptr<rknnPool<rkYolov5s, cv::Mat, cv::Mat>> rknn_pool_;
|
||||
// (关键修改) rknnPool 的输出类型变为 detect_result_group_t
|
||||
std::unique_ptr<rknnPool<rkYolov5s, cv::Mat, detect_result_group_t>> rknn_pool_;
|
||||
cv::VideoCapture capture_;
|
||||
cv::VideoWriter writer_;
|
||||
|
||||
// 线程管理
|
||||
std::thread processing_thread_;
|
||||
std::atomic<bool> running_{false};
|
||||
|
||||
// (新增) 跟踪器状态变量 (从 rkYolov5s 移入)
|
||||
cv::Rect intrusion_zone_;
|
||||
std::map<int, TrackedPerson> tracked_persons_;
|
||||
int next_track_id_;
|
||||
double intrusion_time_threshold_;
|
||||
};
|
||||
Loading…
Reference in New Issue