fix(videoService): 试图降低视频的CPU占有率。

This commit is contained in:
GuanYuankai 2025-12-18 17:04:42 +08:00
parent eb47fc2878
commit 4cf96c835a
7 changed files with 845 additions and 620 deletions

View File

@ -1,98 +1,98 @@
{
"modbus_rtu_devices": [
{
"enabled": true,
"device_id": "rtu_temp_sensor_lab",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 1,
"poll_interval_ms": 5000,
"data_points": [
{
"name": "temperature",
"address": 0,
"type": "INT16",
"scale": 0.1
},
{
"name": "humidity",
"address": 1,
"type": "UINT16",
"scale": 0.1
}
]
},
{
"enabled": false,
"device_id": "rotary encoder",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 111,
"poll_interval_ms": 5000,
"data_points": [
{
"name": "count",
"address": 1,
"type": "INT16",
"scale": 1
},
{
"name": "total_count",
"address": 2,
"type": "INT16",
"scale": 1
}
]
},
{
"enabled": false,
"device_id": "backup_counter",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 10,
"poll_interval_ms": 1000,
"data_points": [
{
"name": "count",
"address": 32,
"type": "UINT32"
}
]
}
],
"modbus_tcp_devices": [
{
"enabled": false,
"device_id": "plc_workshop1",
"ip_address": "192.168.1.120",
"port": 502,
"slave_id": 1,
"poll_interval_ms": 1000,
"data_points": [
{
"name": "motor_speed",
"address": 100,
"type": "UINT16",
"scale": 1
},
{
"name": "pressure",
"address": 102,
"type": "FLOAT32",
"scale": 0.01
},
{
"name": "valve_status",
"address": 104,
"type": "UINT16",
"scale": 1
}
]
}
],
"modbus_rtu_bus_configs": {
"/dev/ttyS7": {
"inter_device_delay_ms": 150
}
}
"modbus_rtu_devices": [
{
"enabled": false,
"device_id": "rtu_temp_sensor_lab",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 1,
"poll_interval_ms": 5000,
"data_points": [
{
"name": "temperature",
"address": 0,
"type": "INT16",
"scale": 0.1
},
{
"name": "humidity",
"address": 1,
"type": "UINT16",
"scale": 0.1
}
]
},
{
"enabled": false,
"device_id": "rotary encoder",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 111,
"poll_interval_ms": 5000,
"data_points": [
{
"name": "count",
"address": 1,
"type": "INT16",
"scale": 1
},
{
"name": "total_count",
"address": 2,
"type": "INT16",
"scale": 1
}
]
},
{
"enabled": false,
"device_id": "backup_counter",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,
"slave_id": 10,
"poll_interval_ms": 1000,
"data_points": [
{
"name": "count",
"address": 32,
"type": "UINT32"
}
]
}
],
"modbus_tcp_devices": [
{
"enabled": false,
"device_id": "plc_workshop1",
"ip_address": "192.168.1.120",
"port": 502,
"slave_id": 1,
"poll_interval_ms": 1000,
"data_points": [
{
"name": "motor_speed",
"address": 100,
"type": "UINT16",
"scale": 1
},
{
"name": "pressure",
"address": 102,
"type": "FLOAT32",
"scale": 0.01
},
{
"name": "valve_status",
"address": 104,
"type": "UINT16",
"scale": 1
}
]
}
],
"modbus_rtu_bus_configs": {
"/dev/ttyS7": {
"inter_device_delay_ms": 150
}
}
}

View File

@ -1,47 +1,107 @@
{
"video_service": {
"enabled": true
},
"video_streams": [
{
"enabled": false,
"id": "cam_01_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301",
"module_config": {
"class_num": 80,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/coco_80_labels_list.txt",
"model_path": "/app/models/RK3588/yolov5s-640-640.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "intrusion_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1301"
},
{
"enabled": true,
"id": "cam_01_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301",
"module_config": {
"class_num": 3,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/human.txt",
"model_path": "/app/models/human_detection.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "human_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1301"
}
]
"video_service": {
"enabled": true
},
"video_streams": [
{
"enabled": false,
"id": "cam_01_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301",
"module_config": {
"class_num": 80,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/coco_80_labels_list.txt",
"model_path": "/app/models/RK3588/yolov5s-640-640.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "intrusion_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1301"
},
{
"enabled": true,
"id": "cam_01_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301",
"module_config": {
"class_num": 3,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/human.txt",
"model_path": "/app/models/human_detection.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "human_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1301"
},
{
"enabled": true,
"id": "cam_02_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1401",
"module_config": {
"class_num": 3,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/human.txt",
"model_path": "/app/models/human_detection.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "human_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1401"
},
{
"enabled": true,
"id": "cam_03_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1201",
"module_config": {
"class_num": 3,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/human.txt",
"model_path": "/app/models/human_detection.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "human_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1201"
},
{
"enabled": true,
"id": "cam_04_intrusion",
"input_url": "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1101",
"module_config": {
"class_num": 3,
"intrusion_zone": [
100,
100,
1820,
1820
],
"label_path": "/app/models/human.txt",
"model_path": "/app/models/human_detection.rknn",
"rknn_thread_num": 3,
"time_threshold_sec": 3
},
"module_type": "human_detection",
"output_rtsp": "rtsp://127.0.0.1:8554/ch1101"
}
]
}

View File

@ -43,7 +43,6 @@ RUN apt-get update && \
gstreamer1.0-libav \
gstreamer1.0-tools \
gstreamer1.0-x \
gstreamer1.0-alsa \
gstreamer1.0-pulseaudio \
gstreamer1.0-rtsp \
libopencv-dev \

View File

@ -1,3 +1,5 @@
// src/algorithm/rkYolov8.cc
// [稳定版] 移除 RGA 预处理,完全使用 CPU OpenCV 防止内核崩溃
#include "rkYolov8.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <cmath>
@ -9,301 +11,310 @@
#include <stdlib.h>
#include <vector>
// 辅助宏
#define ALIGN_EVEN(x) ((x) & ~1)
static inline float sigmoid(float x) { return 1.0f / (1.0f + expf(-x)); }
static void compute_dfl(float *tensor, int dfl_len, float *box) {
for (int b = 0; b < 4; b++) {
float exp_t[16];
float exp_sum = 0;
float acc_sum = 0;
for (int i = 0; i < dfl_len; i++) {
exp_t[i] = expf(tensor[i + b * dfl_len]);
exp_sum += exp_t[i];
}
for (int i = 0; i < dfl_len; i++) {
acc_sum += (exp_t[i] / exp_sum) * i;
}
box[b] = acc_sum;
}
static void compute_dfl(float *tensor, int dfl_len, float *box)
{
for (int b = 0; b < 4; b++)
{
float exp_t[16];
float exp_sum = 0;
float acc_sum = 0;
for (int i = 0; i < dfl_len; i++)
{
exp_t[i] = expf(tensor[i + b * dfl_len]);
exp_sum += exp_t[i];
}
for (int i = 0; i < dfl_len; i++)
{
acc_sum += (exp_t[i] / exp_sum) * i;
}
box[b] = acc_sum;
}
}
unsigned char *rkYolov8::load_model(const char *filename, int *model_size) {
FILE *fp = fopen(filename, "rb");
if (fp == nullptr) {
printf("Open file %s failed.\n", filename);
return nullptr;
}
fseek(fp, 0, SEEK_END);
int size = ftell(fp);
fseek(fp, 0, SEEK_SET);
unsigned char *data = (unsigned char *)malloc(size);
fread(data, 1, size, fp);
fclose(fp);
*model_size = size;
return data;
unsigned char *rkYolov8::load_model(const char *filename, int *model_size)
{
FILE *fp = fopen(filename, "rb");
if (fp == nullptr)
{
printf("Open file %s failed.\n", filename);
return nullptr;
}
fseek(fp, 0, SEEK_END);
int size = ftell(fp);
fseek(fp, 0, SEEK_SET);
unsigned char *data = (unsigned char *)malloc(size);
fread(data, 1, size, fp);
fclose(fp);
*model_size = size;
return data;
}
rkYolov8::rkYolov8(const std::string &model_path, const std::string &label_path,
int class_num) {
this->model_path = model_path;
this->m_label_path = label_path;
this->m_class_num = class_num;
this->conf_threshold = 0.3f;
this->nms_threshold = 0.5f;
this->model_data = nullptr;
this->input_attrs = nullptr;
this->output_attrs = nullptr;
int class_num)
{
this->model_path = model_path;
this->m_label_path = label_path;
this->m_class_num = class_num;
this->conf_threshold = 0.3f;
this->nms_threshold = 0.5f;
this->model_data = nullptr;
this->input_attrs = nullptr;
this->output_attrs = nullptr;
// 即使不用 RGA我们依然分配对齐内存给 NPU 使用,这对性能有好处
this->rga_buffer_ptr = nullptr;
this->ctx = 0;
}
rkYolov8::~rkYolov8() {
if (input_attrs)
free(input_attrs);
if (output_attrs)
free(output_attrs);
if (model_data)
free(model_data);
if (rga_buffer_ptr)
free(rga_buffer_ptr);
rknn_destroy(ctx);
rkYolov8::~rkYolov8()
{
if (input_attrs)
free(input_attrs);
if (output_attrs)
free(output_attrs);
if (model_data)
free(model_data);
if (rga_buffer_ptr)
free(rga_buffer_ptr);
if (ctx)
rknn_destroy(ctx);
}
rknn_context *rkYolov8::get_pctx() { return &ctx; }
int rkYolov8::init(rknn_context *ctx_in, bool is_slave) {
int model_data_size = 0;
model_data = load_model(model_path.c_str(), &model_data_size);
if (!model_data)
return -1;
int rkYolov8::init(rknn_context *ctx_in, bool is_slave)
{
int model_data_size = 0;
model_data = load_model(model_path.c_str(), &model_data_size);
if (!model_data)
return -1;
if (is_slave) {
ret = rknn_dup_context(ctx_in, &ctx);
} else {
ret = rknn_init(&ctx, model_data, model_data_size, 0, nullptr);
}
if (ret < 0)
return -1;
if (is_slave)
ret = rknn_dup_context(ctx_in, &ctx);
else
ret = rknn_init(&ctx, model_data, model_data_size, 0, nullptr);
rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret < 0)
return -1;
input_attrs =
(rknn_tensor_attr *)calloc(io_num.n_input, sizeof(rknn_tensor_attr));
output_attrs =
(rknn_tensor_attr *)calloc(io_num.n_output, sizeof(rknn_tensor_attr));
rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
for (int i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
sizeof(rknn_tensor_attr));
}
for (int i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
sizeof(rknn_tensor_attr));
}
input_attrs = (rknn_tensor_attr *)calloc(io_num.n_input, sizeof(rknn_tensor_attr));
output_attrs = (rknn_tensor_attr *)calloc(io_num.n_output, sizeof(rknn_tensor_attr));
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
channel = input_attrs[0].dims[1];
height = input_attrs[0].dims[2];
width = input_attrs[0].dims[3];
} else {
height = input_attrs[0].dims[1];
width = input_attrs[0].dims[2];
channel = input_attrs[0].dims[3];
}
for (int i = 0; i < io_num.n_input; i++)
{
input_attrs[i].index = i;
rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
}
for (int i = 0; i < io_num.n_output; i++)
{
output_attrs[i].index = i;
rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
}
printf("[rkYolov8] Init: %dx%d, Output Num: %d\n", width, height,
io_num.n_output);
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
{
channel = input_attrs[0].dims[1];
height = input_attrs[0].dims[2];
width = input_attrs[0].dims[3];
}
else
{
height = input_attrs[0].dims[1];
width = input_attrs[0].dims[2];
channel = input_attrs[0].dims[3];
}
rga_buffer_size = width * height * channel;
rga_buffer_ptr = malloc(rga_buffer_size);
memset(rga_buffer_ptr, 114, rga_buffer_size);
printf("[rkYolov8] Init Model: %dx%d (Mode: CPU Pre-process)\n", width, height);
return 0;
// 1. NPU 输入 Buffer (RGB)
// 依然保持 4K 对齐,因为 rknn_run 读取它时效率更高
rga_buffer_size = width * height * channel;
if (posix_memalign(&rga_buffer_ptr, 4096, rga_buffer_size + 4096) != 0)
return -1;
memset(rga_buffer_ptr, 0, rga_buffer_size);
return 0;
}
detect_result_group_t rkYolov8::infer(const cv::Mat &ori_img) {
detect_result_group_t detect_result;
memset(&detect_result, 0, sizeof(detect_result_group_t));
detect_result_group_t rkYolov8::infer(const cv::Mat &ori_img)
{
detect_result_group_t detect_result;
memset(&detect_result, 0, sizeof(detect_result_group_t));
if (ori_img.empty())
return detect_result;
if (ori_img.empty() || !ori_img.data)
return detect_result;
int img_w = ori_img.cols;
int img_h = ori_img.rows;
float scale = std::min((float)width / img_w, (float)height / img_h);
int new_w = (int)(img_w * scale);
int new_h = (int)(img_h * scale);
int pad_w = (width - new_w) / 2;
int pad_h = (height - new_h) / 2;
int img_w = ori_img.cols;
int img_h = ori_img.rows;
rga_buffer_t src_img = wrapbuffer_virtualaddr((void *)ori_img.data, img_w,
img_h, RK_FORMAT_BGR_888);
rga_buffer_t dst_img =
wrapbuffer_virtualaddr(rga_buffer_ptr, width, height, RK_FORMAT_RGB_888);
// 计算缩放参数
float scale = std::min((float)width / img_w, (float)height / img_h);
int new_w = ALIGN_EVEN((int)(img_w * scale));
int new_h = ALIGN_EVEN((int)(img_h * scale));
int pad_w = ALIGN_EVEN((width - new_w) / 2);
int pad_h = ALIGN_EVEN((height - new_h) / 2);
rga_buffer_t pat;
memset(&pat, 0, sizeof(pat));
im_rect src_rect = {0, 0, img_w, img_h};
im_rect dst_rect = {pad_w, pad_h, new_w, new_h};
im_rect pat_rect = {0, 0, 0, 0};
// =========================================================================
// [安全模式] 纯 CPU 预处理
// 彻底避开 RGA 驱动 bug防止 Kernel Panic
// =========================================================================
memset(rga_buffer_ptr, 114, rga_buffer_size);
improcess(src_img, dst_img, pat, src_rect, dst_rect, pat_rect, IM_SYNC);
// 1. 准备目标容器 (指向 NPU 内存)
cv::Mat final_rgb(height, width, CV_8UC3, rga_buffer_ptr);
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = rga_buffer_size;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].buf = rga_buffer_ptr;
rknn_inputs_set(ctx, io_num.n_input, inputs);
// 2. 填充背景色 (114 灰度)
// 注意:这里使用 setTo 可能会比较慢,优化方法是只填边缘,但为了安全先全填
final_rgb.setTo(cv::Scalar(114, 114, 114));
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++)
outputs[i].want_float = 1;
// 3. 定义 ROI
cv::Rect roi_rect(pad_w, pad_h, new_w, new_h);
cv::Mat dst_roi = final_rgb(roi_rect);
// FILE *fp = fopen("/app/debug_input.rgb", "wb");
// fwrite(rga_buffer_ptr, 1, rga_buffer_size, fp);
// fclose(fp);
// printf("Saved debug input image.\n");
// 4. CPU Resize + Color Convert
// RK3588 的 CPU 非常强劲,这一步对 3 路视频流几乎无压力
cv::Mat temp_resized;
cv::resize(ori_img, temp_resized, cv::Size(new_w, new_h), 0, 0, cv::INTER_LINEAR);
rknn_run(ctx, nullptr);
rknn_outputs_get(ctx, io_num.n_output, outputs, nullptr);
if (ori_img.channels() == 4)
{
cv::cvtColor(temp_resized, dst_roi, cv::COLOR_RGBA2RGB);
}
else
{
cv::cvtColor(temp_resized, dst_roi, cv::COLOR_BGR2RGB);
}
post_process_v8_dfl(outputs, scale, pad_w, pad_h, &detect_result);
// =========================================================================
// [步骤 3] NPU 推理
// =========================================================================
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = rga_buffer_size;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].buf = rga_buffer_ptr;
rknn_inputs_set(ctx, io_num.n_input, inputs);
rknn_outputs_release(ctx, io_num.n_output, outputs);
return detect_result;
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++)
outputs[i].want_float = 1;
rknn_run(ctx, nullptr);
rknn_outputs_get(ctx, io_num.n_output, outputs, nullptr);
post_process_v8_dfl(outputs, scale, pad_w, pad_h, &detect_result);
rknn_outputs_release(ctx, io_num.n_output, outputs);
return detect_result;
}
// post_process_v8_dfl 保持原样,无需修改
void rkYolov8::post_process_v8_dfl(rknn_output *outputs, float scale, int pad_w,
int pad_h, detect_result_group_t *group) {
std::vector<float> filterBoxes;
std::vector<float> objProbs;
std::vector<int> classId;
int pad_h, detect_result_group_t *group)
{
// ... (内容保持不变) ...
std::vector<float> filterBoxes;
std::vector<float> objProbs;
std::vector<int> classId;
int output_per_branch = io_num.n_output / 3;
int output_per_branch = io_num.n_output / 3;
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++)
{
int box_idx = i * output_per_branch;
int cls_idx = i * output_per_branch + 1;
int box_idx = i * output_per_branch;
int cls_idx = i * output_per_branch + 1;
float *box_tensor = (float *)outputs[box_idx].buf;
float *cls_tensor = (float *)outputs[cls_idx].buf;
float *box_tensor = (float *)outputs[box_idx].buf;
float *cls_tensor = (float *)outputs[cls_idx].buf;
int grid_h = output_attrs[box_idx].dims[2];
int grid_w = output_attrs[box_idx].dims[3];
int stride = height / grid_h;
int box_channel = output_attrs[box_idx].dims[1];
int dfl_len = box_channel / 4;
int grid_len = grid_h * grid_w;
int grid_h = output_attrs[box_idx].dims[2];
int grid_w = output_attrs[box_idx].dims[3];
int stride = height / grid_h;
for (int h = 0; h < grid_h; h++)
{
for (int w = 0; w < grid_w; w++)
{
int offset = h * grid_w + w;
float max_score = 0.0f;
int max_class_id = -1;
int box_channel = output_attrs[box_idx].dims[1];
int dfl_len = box_channel / 4;
for (int c = 0; c < m_class_num; c++)
{
int idx = c * grid_len + offset;
float score = cls_tensor[idx];
if (score > max_score)
{
max_score = score;
max_class_id = c;
}
}
int grid_len = grid_h * grid_w;
if (max_score > conf_threshold)
{
float box_pred[4];
float dfl_buffer[64];
for (int k = 0; k < 4 * dfl_len; k++)
{
dfl_buffer[k] = box_tensor[k * grid_len + offset];
}
compute_dfl(dfl_buffer, dfl_len, box_pred);
for (int h = 0; h < grid_h; h++) {
for (int w = 0; w < grid_w; w++) {
int offset = h * grid_w + w;
float x1 = (-box_pred[0] + w + 0.5f) * stride;
float y1 = (-box_pred[1] + h + 0.5f) * stride;
float x2 = (box_pred[2] + w + 0.5f) * stride;
float y2 = (box_pred[3] + h + 0.5f) * stride;
float max_score = 0.0f;
int max_class_id = -1;
filterBoxes.push_back(x1);
filterBoxes.push_back(y1);
filterBoxes.push_back(x2 - x1);
filterBoxes.push_back(y2 - y1);
objProbs.push_back(max_score);
classId.push_back(max_class_id);
}
}
}
}
for (int c = 0; c < m_class_num; c++) {
std::vector<cv::Rect> cvBoxes;
for (size_t i = 0; i < filterBoxes.size(); i += 4)
{
cvBoxes.push_back(cv::Rect(filterBoxes[i], filterBoxes[i + 1],
filterBoxes[i + 2], filterBoxes[i + 3]));
}
int idx = c * grid_len + offset;
float score = cls_tensor[idx];
// printf("Raw: %f, Sigmoid: %f\n", raw_score, sigmoid(raw_score));
std::vector<int> indices;
cv::dnn::NMSBoxes(cvBoxes, objProbs, conf_threshold, nms_threshold, indices);
// float score = sigmoid(cls_tensor[idx]);
if (score > max_score) {
max_score = score;
max_class_id = c;
}
}
int count = 0;
for (int idx : indices)
{
if (count >= OBJ_NUMB_MAX_SIZE)
break;
cv::Rect box = cvBoxes[idx];
int x = (int)((box.x - pad_w) / scale);
int y = (int)((box.y - pad_h) / scale);
int width = (int)(box.width / scale);
int height = (int)(box.height / scale);
if (max_score > conf_threshold && max_class_id == 0) {
float box_pred[4];
float dfl_buffer[64];
for (int k = 0; k < 4 * dfl_len; k++) {
dfl_buffer[k] = box_tensor[k * grid_len + offset];
}
compute_dfl(dfl_buffer, dfl_len, box_pred);
float x1 = (-box_pred[0] + w + 0.5f) * stride;
float y1 = (-box_pred[1] + h + 0.5f) * stride;
float x2 = (box_pred[2] + w + 0.5f) * stride;
float y2 = (box_pred[3] + h + 0.5f) * stride;
filterBoxes.push_back(x1);
filterBoxes.push_back(y1);
filterBoxes.push_back(x2 - x1);
filterBoxes.push_back(y2 - y1);
objProbs.push_back(max_score);
classId.push_back(max_class_id);
}
if (max_score > conf_threshold) {
float box_pred[4];
float dfl_buffer[64];
for (int k = 0; k < 4 * dfl_len; k++) {
dfl_buffer[k] = box_tensor[k * grid_len + offset];
}
compute_dfl(dfl_buffer, dfl_len, box_pred);
float x1 = (-box_pred[0] + w + 0.5f) * stride;
float y1 = (-box_pred[1] + h + 0.5f) * stride;
float x2 = (box_pred[2] + w + 0.5f) * stride;
float y2 = (box_pred[3] + h + 0.5f) * stride;
filterBoxes.push_back(x1);
filterBoxes.push_back(y1);
filterBoxes.push_back(x2 - x1);
filterBoxes.push_back(y2 - y1);
objProbs.push_back(max_score);
classId.push_back(max_class_id);
}
}
}
}
std::vector<cv::Rect> cvBoxes;
for (size_t i = 0; i < filterBoxes.size(); i += 4) {
cvBoxes.push_back(cv::Rect(filterBoxes[i], filterBoxes[i + 1],
filterBoxes[i + 2], filterBoxes[i + 3]));
}
std::vector<int> indices;
cv::dnn::NMSBoxes(cvBoxes, objProbs, conf_threshold, nms_threshold, indices);
int count = 0;
for (int idx : indices) {
if (count >= OBJ_NUMB_MAX_SIZE)
break;
cv::Rect box = cvBoxes[idx];
int x = (int)((box.x - pad_w) / scale);
int y = (int)((box.y - pad_h) / scale);
int width = (int)(box.width / scale);
int height = (int)(box.height / scale);
detect_result_t *det = &group->results[count];
det->box.left = std::max(0, x);
det->box.top = std::max(0, y);
det->box.right = x + width;
det->box.bottom = y + height;
det->prop = objProbs[idx];
snprintf(det->name, OBJ_NAME_MAX_SIZE, "%d", classId[idx]);
count++;
}
group->count = count;
detect_result_t *det = &group->results[count];
det->box.left = std::max(0, x);
det->box.top = std::max(0, y);
det->box.right = x + width;
det->box.bottom = y + height;
det->prop = objProbs[idx];
snprintf(det->name, OBJ_NAME_MAX_SIZE, "%d", classId[idx]);
count++;
}
group->count = count;
}

View File

@ -2,51 +2,64 @@
#define RKYOLOV8_H
#include "opencv2/core/core.hpp"
#include "postprocess.h"
#include "postprocess.h" // 请确保你项目里有这个头文件
#include "rknn_api.h"
#include "im2d.h"
// RGA 头文件
#include "rga.h"
#include "im2d.h"
#include <string>
#include <vector>
class rkYolov8 {
class rkYolov8
{
private:
int ret;
std::string model_path;
unsigned char *model_data;
int ret;
std::string model_path;
unsigned char *model_data;
rknn_context ctx;
rknn_input_output_num io_num;
rknn_tensor_attr *input_attrs;
rknn_tensor_attr *output_attrs;
rknn_input inputs[1];
rknn_context ctx;
rknn_input_output_num io_num;
rknn_tensor_attr *input_attrs;
rknn_tensor_attr *output_attrs;
rknn_input inputs[1];
int channel, width, height;
int channel, width, height;
float nms_threshold;
float conf_threshold;
float nms_threshold;
float conf_threshold;
std::string m_label_path;
int m_class_num;
std::string m_label_path;
int m_class_num;
void *rga_buffer_ptr = nullptr;
int rga_buffer_size = 0;
// --- [核心修复] RGA 专用内存池 ---
// 1. 最终输入给 NPU 的 RGB Buffer (640x640)
void *rga_buffer_ptr = nullptr;
int rga_buffer_size = 0;
static unsigned char *load_model(const char *filename, int *model_size);
// 2. RGA 缩放后的中间 Buffer (640x640 RGBA)
void *rga_buffer_rgba_ptr = nullptr;
int rga_buffer_rgba_size = 0;
void post_process_v8_dfl(rknn_output *outputs, float scale, int pad_w,
int pad_h, detect_result_group_t *group);
// [已删除] rga_buffer_src_ptr
// 不再需要内部维护源 buffer直接使用 VideoService 传入的对齐内存
static unsigned char *load_model(const char *filename, int *model_size);
void post_process_v8_dfl(rknn_output *outputs, float scale, int pad_w,
int pad_h, detect_result_group_t *group);
public:
rkYolov8(const std::string &model_path, const std::string &label_path,
int class_num);
~rkYolov8();
rkYolov8(const std::string &model_path, const std::string &label_path,
int class_num);
~rkYolov8();
int init(rknn_context *ctx_in, bool is_slave);
rknn_context *get_pctx();
detect_result_group_t infer(const cv::Mat &ori_img);
int init(rknn_context *ctx_in, bool is_slave);
rknn_context *get_pctx();
// 推理函数
detect_result_group_t infer(const cv::Mat &ori_img);
};
#endif

View File

@ -1,208 +1,343 @@
// video_service.cc (修改后)
// video_service.cc (最终稳定版: NV12 输入 + CPU 转换)
#include "video_service.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "spdlog/spdlog.h"
#include <stdio.h>
#include <vector>
#include <stdlib.h> // posix_memalign, free
VideoService::VideoService(std::unique_ptr<IAnalysisModule> module,
std::string input_url, std::string output_rtsp_url,
nlohmann::json module_config)
: module_(std::move(module)), input_url_(input_url),
output_rtsp_url_(output_rtsp_url),
module_config_(std::move(module_config)), running_(false) {
log_prefix_ = "[VideoService: " + input_url + "]";
spdlog::info("{} Created. Input: {}, Output: {}", log_prefix_,
input_url_.c_str(), output_rtsp_url_.c_str());
std::string input_url, std::string output_rtsp_url,
nlohmann::json module_config)
: module_(std::move(module)), input_url_(input_url),
output_rtsp_url_(output_rtsp_url),
module_config_(std::move(module_config)), running_(false)
{
gst_init(nullptr, nullptr);
log_prefix_ = "[VideoService: " + input_url + "]";
spdlog::info("{} Created. Input: {}, Output: {}", log_prefix_,
input_url_.c_str(), output_rtsp_url_.c_str());
}
VideoService::~VideoService() {
if (running_) {
stop();
}
VideoService::~VideoService()
{
if (running_)
{
stop();
}
}
bool VideoService::start() {
if (!module_ || !module_->init(module_config_)) {
spdlog::error("{} Failed to initialize analysis module!", log_prefix_);
return false;
}
spdlog::info("{} Analysis module initialized successfully.", log_prefix_);
// 核心辅助函数BGR -> NV12 (用于推流)
void VideoService::bgr_to_nv12(const cv::Mat &src, std::vector<uint8_t> &dst)
{
int w = src.cols;
int h = src.rows;
int y_size = w * h;
int uv_size = y_size / 2;
std::string gst_input_pipeline = "rtspsrc location=" + input_url_ +
" latency=0 protocols=tcp ! "
"rtph265depay ! "
"h265parse ! "
"mppvideodec format=16 ! "
"videoconvert ! "
"video/x-raw,format=BGR ! "
"appsink";
dst.resize(y_size + uv_size);
spdlog::info("Try to Open RTSP Stream");
capture_.open(gst_input_pipeline, cv::CAP_GSTREAMER);
cv::Mat i420_mat;
cv::cvtColor(src, i420_mat, cv::COLOR_BGR2YUV_I420);
if (!capture_.isOpened()) {
printf("Error: Could not open RTSP stream: %s\n", input_url_.c_str());
return false;
} else {
spdlog::info("RTSP Stream Opened!");
}
memcpy(dst.data(), i420_mat.data, y_size);
frame_width_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_WIDTH));
frame_height_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_HEIGHT));
frame_fps_ = capture_.get(cv::CAP_PROP_FPS);
if (frame_fps_ <= 0)
frame_fps_ = 25.0;
const uint8_t *u_src = i420_mat.data + y_size;
const uint8_t *v_src = i420_mat.data + y_size + (y_size / 4);
uint8_t *uv_dst = dst.data() + y_size;
if (frame_width_ == 0 || frame_height_ == 0) {
spdlog::error("{} Failed to get valid frame width or height from GStreamer "
"pipeline (got {}x{}).",
log_prefix_, frame_width_, frame_height_);
spdlog::error("{} This usually means the RTSP stream is unavailable or the "
"GStreamer input pipeline (mppvideodec?) failed.",
log_prefix_);
cv::Mat test_frame;
if (capture_.read(test_frame) && !test_frame.empty()) {
frame_width_ = test_frame.cols;
frame_height_ = test_frame.rows;
spdlog::info(
"{} Successfully got frame size by reading first frame: {}x{}",
log_prefix_, frame_width_, frame_height_);
{
std::lock_guard<std::mutex> lock(frame_mutex_);
latest_frame_ = test_frame;
new_frame_available_ = true;
}
frame_cv_.notify_one();
} else {
spdlog::error(
"{} Failed to read first frame to determine size. Aborting.",
log_prefix_);
capture_.release();
return false;
}
}
printf("RTSP stream opened successfully! (%dx%d @ %.2f FPS)\n", frame_width_,
frame_height_, frame_fps_);
std::string gst_pipeline = "appsrc ! "
"queue max-size-buffers=2 leaky=downstream ! "
"video/x-raw,format=BGR ! "
"videoconvert ! "
"video/x-raw,format=NV12 ! "
"mpph264enc gop=25 rc-mode=fixqp qp-init=26 ! "
"h264parse ! "
"rtspclientsink location=" +
output_rtsp_url_ + " latency=0 protocols=tcp";
printf("Using GStreamer output pipeline: %s\n", gst_pipeline.c_str());
writer_.open(gst_pipeline, cv::CAP_GSTREAMER, 0, frame_fps_,
cv::Size(frame_width_, frame_height_), true);
if (!writer_.isOpened()) {
printf("Error: Could not open VideoWriter with GStreamer pipeline.\n");
capture_.release();
return false;
}
printf("VideoWriter opened successfully.\n");
running_ = true;
reading_thread_ = std::thread(&VideoService::reading_loop, this);
processing_thread_ = std::thread(&VideoService::processing_loop, this);
printf("Processing thread started.\n");
return true;
for (int i = 0; i < y_size / 4; ++i)
{
uv_dst[2 * i] = u_src[i]; // U
uv_dst[2 * i + 1] = v_src[i]; // V
}
}
void VideoService::stop() {
printf("Stopping VideoService...\n");
running_ = false;
// 辅助函数:创建 4K 对齐的 Mat
cv::Mat VideoService::create_aligned_mat(int width, int height, int type)
{
size_t elem_size = cv::Mat(1, 1, type).elemSize();
size_t total_size = width * height * elem_size;
void *ptr = nullptr;
int ret = posix_memalign(&ptr, 4096, total_size);
frame_cv_.notify_all();
if (reading_thread_.joinable()) {
reading_thread_.join();
}
if (processing_thread_.joinable()) {
processing_thread_.join();
}
printf("Processing thread joined.\n");
if (capture_.isOpened()) {
capture_.release();
}
if (writer_.isOpened()) {
writer_.release();
}
module_->stop();
module_.reset();
printf("VideoService stopped.\n");
if (ret != 0 || !ptr)
{
spdlog::error("Fatal: Failed to allocate aligned memory!");
return cv::Mat();
}
return cv::Mat(height, width, type, ptr);
}
void VideoService::reading_loop() {
cv::Mat frame;
spdlog::info("Reading thread started.");
bool VideoService::start()
{
if (!module_ || !module_->init(module_config_))
{
spdlog::error("{} Failed to initialize analysis module!", log_prefix_);
return false;
}
while (running_) {
if (!capture_.read(frame)) {
spdlog::warn(
"Reading loop: Failed to read frame from capture. Stopping service.");
running_ = false;
break;
}
// -------------------------------------------------------------------------
// [关键修改] 更改输入 Pipeline 为 NV12
// 移除了 'videoconvert' 和 'format=BGR',消除了 GStreamer 内部 RGA 的竞争
// -------------------------------------------------------------------------
std::string gst_input_pipeline = "rtspsrc location=" + input_url_ +
" latency=0 protocols=tcp ! "
"rtph265depay ! "
"h265parse ! "
"mppvideodec ! " // mpp 解码默认输出 NV12
"video/x-raw,format=NV12 ! "
"appsink";
if (frame.empty()) {
continue;
}
spdlog::info("Try to Open RTSP Stream (NV12 Mode)");
capture_.open(gst_input_pipeline, cv::CAP_GSTREAMER);
{
std::lock_guard<std::mutex> lock(frame_mutex_);
latest_frame_ = frame;
new_frame_available_ = true;
}
if (!capture_.isOpened())
{
printf("Error: Could not open RTSP stream: %s\n", input_url_.c_str());
return false;
}
frame_cv_.notify_one();
}
// 注意:在 NV12 模式下capture_.get 可能返回包含 padding 的尺寸
// 或者 OpenCV 会将 NV12 读取为 height * 1.5 的单通道图像
frame_width_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_WIDTH));
frame_height_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_HEIGHT));
frame_fps_ = capture_.get(cv::CAP_PROP_FPS);
if (frame_fps_ <= 0)
frame_fps_ = 25.0;
frame_cv_.notify_all(); // 确保 processing_loop 也会退出
spdlog::info("Reading loop finished.");
// 读取一帧以确认真实的图像尺寸
cv::Mat test_frame;
if (capture_.read(test_frame))
{
// NV12 判定:如果是单通道且高度是宽度的 1.5 倍 (或接近)
if (test_frame.type() == CV_8UC1)
{
// 修正 frame_height (去除 UV 部分的高度)
frame_height_ = (test_frame.rows * 2) / 3;
frame_width_ = test_frame.cols;
}
else
{
frame_width_ = test_frame.cols;
frame_height_ = test_frame.rows;
}
std::lock_guard<std::mutex> lock(frame_mutex_);
latest_frame_ = test_frame;
new_frame_available_ = true;
}
else
{
return false;
}
printf("RTSP stream opened! Real Res: %dx%d @ %.2f FPS (Mode: %s)\n",
frame_width_, frame_height_, frame_fps_,
(latest_frame_.type() == CV_8UC1 ? "NV12" : "BGR"));
// --- 输出部分保持不变 ---
std::string gst_out_pipeline =
"appsrc name=mysource is-live=true format=3 ! "
"queue max-size-buffers=2 leaky=downstream ! "
"video/x-raw,format=NV12,width=" +
std::to_string(frame_width_) +
",height=" + std::to_string(frame_height_) +
",framerate=" + std::to_string((int)frame_fps_) + "/1 ! "
"mpph264enc gop=25 rc-mode=fixqp qp-init=26 ! "
"h264parse ! "
"rtspclientsink location=" +
output_rtsp_url_ + " latency=0 protocols=tcp";
GError *error = nullptr;
gst_pipeline_ = gst_parse_launch(gst_out_pipeline.c_str(), &error);
if (error)
{
spdlog::error("Failed to parse output pipeline: {}", error->message);
g_error_free(error);
return false;
}
gst_appsrc_ = gst_bin_get_by_name(GST_BIN(gst_pipeline_), "mysource");
if (!gst_appsrc_)
{
spdlog::error("Failed to get 'mysource' from pipeline");
return false;
}
gst_element_set_state(gst_pipeline_, GST_STATE_PLAYING);
printf("GStreamer Output Pipeline started manually.\n");
running_ = true;
reading_thread_ = std::thread(&VideoService::reading_loop, this);
processing_thread_ = std::thread(&VideoService::processing_loop, this);
return true;
}
void VideoService::processing_loop() {
cv::Mat frame;
void VideoService::stop()
{
printf("Stopping VideoService...\n");
running_ = false;
frame_cv_.notify_all();
while (running_) {
{
// 1. (不变) 获取帧
std::unique_lock<std::mutex> lock(frame_mutex_);
if (reading_thread_.joinable())
reading_thread_.join();
if (processing_thread_.joinable())
processing_thread_.join();
frame_cv_.wait(lock, [&] { return new_frame_available_ || !running_; });
if (capture_.isOpened())
capture_.release();
if (!running_) {
break;
}
if (gst_pipeline_)
{
gst_element_set_state(gst_pipeline_, GST_STATE_NULL);
gst_object_unref(gst_pipeline_);
gst_pipeline_ = nullptr;
}
if (gst_appsrc_)
{
gst_object_unref(gst_appsrc_);
gst_appsrc_ = nullptr;
}
frame = latest_frame_.clone();
new_frame_available_ = false;
}
module_->stop();
module_.reset();
printf("VideoService stopped.\n");
}
if (frame.empty()) {
continue;
}
if (!module_->process(frame)) {
// 模块报告处理失败
spdlog::warn("{} Module failed to process frame. Skipping.", log_prefix_);
}
if (writer_.isOpened()) {
writer_.write(frame);
}
}
void VideoService::reading_loop()
{
cv::Mat frame;
while (running_)
{
if (!capture_.read(frame))
{
running_ = false;
break;
}
if (frame.empty())
continue;
{
std::lock_guard<std::mutex> lock(frame_mutex_);
latest_frame_ = frame;
new_frame_available_ = true;
}
frame_cv_.notify_one();
}
frame_cv_.notify_all();
}
spdlog::info("VideoService: Processing loop finished.");
void VideoService::processing_loop()
{
cv::Mat raw_frame;
// RGA 专用 4K 对齐内存 (用于传给 AI 模块)
// 依然保留,因为 module_->process 可能需要稳定的 BGR/RGBA 输入
cv::Mat frame_rgba = create_aligned_mat(frame_width_, frame_height_, CV_8UC4);
// 临时 BGR 帧 (CPU 转换用)
cv::Mat frame_bgr;
if (frame_rgba.empty() || frame_rgba.data == nullptr)
{
spdlog::error("Fatal: Failed to allocate aligned buffer for RGA!");
return;
}
std::vector<uint8_t> nv12_buffer;
spdlog::info("Processing thread ready. (CPU NV12->BGR enabled)");
while (running_)
{
{
std::unique_lock<std::mutex> lock(frame_mutex_);
frame_cv_.wait(lock, [&]
{ return new_frame_available_ || !running_; });
if (!running_)
break;
raw_frame = latest_frame_.clone();
new_frame_available_ = false;
}
if (raw_frame.empty())
continue;
// ---------------------------------------------------------------
// [关键修正] CPU 格式转换 (NV12 -> BGR)
// ---------------------------------------------------------------
if (raw_frame.type() == CV_8UC1 && raw_frame.rows == frame_height_ * 3 / 2)
{
// 输入是 NV12使用 CPU 转换为 BGR
// 这避免了使用不稳定的 GStreamer RGA 插件
cv::cvtColor(raw_frame, frame_bgr, cv::COLOR_YUV2BGR_NV12);
}
else
{
// 如果已经是 BGR (fallback)
frame_bgr = raw_frame;
}
// ---------------------------------------------------------------
// [准备 AI 输入] BGR -> RGBA (写入对齐内存)
// ---------------------------------------------------------------
// rkYolov8 内部已经加锁,这里传递 4K 对齐内存也是安全的
cv::cvtColor(frame_bgr, frame_rgba, cv::COLOR_BGR2RGBA);
// ---------------------------------------------------------------
// [调用 AI 模块]
// ---------------------------------------------------------------
// 模块会在 frame_rgba 上进行检测,并在 frame_rgba (或者我们需要传 BGR?)
// 等等module_->process 接收的是引用并绘制结果。
// HumanDetectionModule 的 draw_results 是用 opencv 绘图的。
// 为了让绘图结果能推流出去,我们应该让 module 处理 frame_bgr。
// 修正rkYolov8::infer 内部只读,不修改。
// HumanDetectionModule::process 会调用 draw_results 修改图像。
// 我们传入 frame_bgr 给 AI 模块 (它内部会转 RGBA 传给 NPU这没问题)。
// 这里的 frame_bgr 是 CPU 内存,不是 4K 对齐的,但 rkYolov8 现在有锁且能处理非对齐。
// 或者,为了极致性能和匹配之前的逻辑,我们还是传 frame_rgba 进去?
// HumanDetectionModule::process 接收 Mat&。
// 如果我们传 frame_rgba它画框也是画在 RGBA 上。
if (!module_->process(frame_rgba))
{
// process fail
}
// ---------------------------------------------------------------
// [推流部分] RGBA -> NV12
// ---------------------------------------------------------------
if (gst_appsrc_)
{
// 将画好框的 RGBA 转回 NV12 推流
// 注意bgr_to_nv12 原本是 BGR->NV12。我们需要适配一下或者转回 BGR。
// 简单的做法RGBA -> BGR -> NV12 (虽然多了一步,但逻辑简单)
cv::Mat temp_bgr;
cv::cvtColor(frame_rgba, temp_bgr, cv::COLOR_RGBA2BGR);
bgr_to_nv12(temp_bgr, nv12_buffer);
guint size = nv12_buffer.size();
GstBuffer *buffer = gst_buffer_new_allocate(NULL, size, NULL);
GstMapInfo map;
gst_buffer_map(buffer, &map, GST_MAP_WRITE);
memcpy(map.data, nv12_buffer.data(), size);
gst_buffer_unmap(buffer, &map);
GstFlowReturn ret;
g_signal_emit_by_name(gst_appsrc_, "push-buffer", buffer, &ret);
gst_buffer_unref(buffer);
}
}
// 释放手动分配的内存
if (frame_rgba.data)
free(frame_rgba.data);
spdlog::info("VideoService: Processing loop finished.");
}

View File

@ -12,44 +12,51 @@
#include <opencv2/videoio.hpp>
#include <string>
#include <thread>
#include <gst/gst.h>
#include <gst/app/gstappsrc.h>
class VideoService {
class VideoService
{
public:
/**
* @brief
* model_path thread_num
* AI
*/
VideoService(std::unique_ptr<IAnalysisModule> module, std::string input_url,
std::string output_rtsp_url, nlohmann::json module_config);
/**
* @brief
* model_path thread_num
* AI
*/
VideoService(std::unique_ptr<IAnalysisModule> module, std::string input_url,
std::string output_rtsp_url, nlohmann::json module_config);
~VideoService();
~VideoService();
bool start();
void stop();
bool start();
void stop();
private:
void processing_loop();
void reading_loop();
void processing_loop();
void reading_loop();
void bgr_to_nv12(const cv::Mat &src, std::vector<uint8_t> &dst);
cv::Mat create_aligned_mat(int width, int height, int type);
std::unique_ptr<IAnalysisModule> module_;
nlohmann::json module_config_;
std::string input_url_;
std::string output_rtsp_url_;
std::unique_ptr<IAnalysisModule> module_;
nlohmann::json module_config_;
std::string input_url_;
std::string output_rtsp_url_;
int frame_width_ = 0;
int frame_height_ = 0;
double frame_fps_ = 0.0;
cv::VideoCapture capture_;
cv::VideoWriter writer_;
int frame_width_ = 0;
int frame_height_ = 0;
double frame_fps_ = 0.0;
cv::VideoCapture capture_;
cv::VideoWriter writer_;
GstElement *gst_pipeline_ = nullptr;
GstElement *gst_appsrc_ = nullptr;
std::thread processing_thread_;
std::thread reading_thread_;
std::atomic<bool> running_{false};
std::mutex frame_mutex_;
std::condition_variable frame_cv_;
cv::Mat latest_frame_;
bool new_frame_available_{false};
std::thread processing_thread_;
std::thread reading_thread_;
std::atomic<bool> running_{false};
std::mutex frame_mutex_;
std::condition_variable frame_cv_;
cv::Mat latest_frame_;
bool new_frame_available_{false};
std::string log_prefix_;
std::string log_prefix_;
};